DOI QR코드

DOI QR Code

콘크리트 보강재용 Fe-Mn-Si-Ni-Cr-TiC계 형상기억합금의 내식성

Corrosion Resistance of Fe-Mn-Si-Ni-Cr-TiC Shape Memory Alloy for Reinforcement of Concrete

  • Joo, Jaehoon (Department of Metallurgical Engineering, Pukyong National University) ;
  • Lee, Hyunjoon (Department of Metallurgical Engineering, Pukyong National University) ;
  • Kim, Dohyoung (Korea Institute of Industrial Technology) ;
  • Lee, Wookjin (Korea Institute of Industrial Technology) ;
  • Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University)
  • 투고 : 2019.12.19
  • 심사 : 2019.12.24
  • 발행 : 2019.12.31

초록

Fe-Mn-Si-Ni-Cr-TiC alloys have a shape memory property, recovering initial shape by heating. With an aim to improve a durability and stability of building and infrastructure, this Fe-based shape memory alloy (FSMA) can be employed to reinforce concrete structure with creation of compressive residual stress. In this work, corrosion resistance of FSMA was compared with general rebar and S400 carbon steel to evaluate the stability in concrete environment. Potentiodynamic polarization test in de-ionized water, tap-water and 3.5 wt.% NaCl solution with variations of pH was used to compare the corrosion resistance. FSMA shows better corrosion resistance than rebar and S400 in tested solutions. However, Cl-containing solution is critical to significantly reduce the corrosion resistance of FSMA. Therefore, though FSMA can be a promising candidate to replace the rebar and S400 for the reinforcement of concrete structure, serious cautions are required in marine environments.

키워드

참고문헌

  1. E. Choi, Y.-S. Chung, J.-H. Choi, H.-T. Kim, H. Lee, Smart Materials and Structures 19 (2010) 035024. https://doi.org/10.1088/0964-1726/19/3/035024
  2. A.K. Maji, I. Negret, Journal of engineering mechanics 124 (1998) 1121-1128. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:10(1121)
  3. C. Czaderski, B. Hahnebach, M. Motavalli, Construction and Building Materials 20 (2006) 824-833. https://doi.org/10.1016/j.conbuildmat.2005.01.038
  4. W. Lee, B. Weber, G. Feltrin, C. Czaderski, M. Motavalli, C. Leinenbach, Smart Materials and Structures 22 (2013) 125037. https://doi.org/10.1088/0964-1726/22/12/125037
  5. W. Lee, B. Weber, C. Leinenbach, Construction and Building Materials 95 (2015) 600-610. https://doi.org/10.1016/j.conbuildmat.2015.07.098
  6. A. Arabi-Hashemi, W. Lee, C. Leinenbach, Materials & Design 139 (2018) 258-268. https://doi.org/10.1016/j.matdes.2017.11.006
  7. D.C. Lagoudas, Shape memory alloys: modeling and engineering applications, Springer 2008.
  8. K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge university press 1999.
  9. J.M. Jani, M. Leary, A. Subic, M.A. Gibson, Materials & Design (1980-2015) 56 (2014) 1078-1113. https://doi.org/10.1016/j.matdes.2013.11.084
  10. G.B. Kauffman, I. Mayo, The chemical educator 2 (1997) 1-21.
  11. Z. Dong, U.E. Klotz, C. Leinenbach, A. Bergamini, C. Czaderski, M. Motavalli, Advanced engineering materials 11 (2009) 40-44. https://doi.org/10.1002/adem.200800312
  12. W. Lee, B. Weber, G. Feltrin, C. Czaderski, M. Motavalli, C. Leinenbach, Materials Science and Engineering: A 581 (2013) 1-7. https://doi.org/10.1016/j.msea.2013.06.002
  13. C. Leinenbach, H. Kramer, C. Bernhard, D. Eifler, Advanced Engineering Materials 14 (2012) 62-67. https://doi.org/10.1002/adem.201100129
  14. T. Maruyama, H. Kubo, Ferrous (Fe-based) shape memory alloys (SMAs): properties, processing and applications, Shape Memory and Superelastic Alloys, Elsevier 2011, pp. 141-159.
  15. A. Baruj, T. Kikuchi, S. Kajiwara, N. Shinya, Materials Science and Engineering: A 378 (2004) 333-336. https://doi.org/10.1016/j.msea.2003.10.357
  16. N. Stanford, D.P. Dunne, Journal of materials science 41 (2006) 4883-4891. https://doi.org/10.1007/s10853-006-0050-7
  17. D. Bu, H. Peng, Y. Wen, N. Li, Materials & Design 32 (2011) 2969-2973. https://doi.org/10.1016/j.matdes.2011.01.032