DOI QR코드

DOI QR Code

Investigation of Synthesis Yield and Diameter Distribution of Single-Walled Carbon Nanotubes Grown at Different Positions in a Horizontal CVD Chamber

수평형 CVD 장치에서 기판 위치에 따른 단일벽 탄소나노튜브의 합성 수율 및 직경 분포 고찰

  • Jo, Sung-Il (Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Jeong, Goo-Hwan (Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
  • 조성일 (강원대학교 대학원 신소재공학과) ;
  • 정구환 (강원대학교 대학원 신소재공학과)
  • Received : 2019.12.16
  • Accepted : 2019.12.26
  • Published : 2019.12.31

Abstract

We investigated a synthesis yield and diameter distribution of single-walled carbon nanotubes (SWNTs) with respect to the growth position in a horizontal chemical vapor deposition (CVD) chamber. Thin films and line-patterned Fe films (0.1 nm thickness) were prepared onto ST-cut quartz substrates as catalyst to compare the growth behavior. The line-patterned samples showed higher growth density and parallel alignment than those of the thin film catalyst samples. In addition, line density of the aligned SWNTs at central region of the chamber was 7.7 tubes/㎛ and increased to 13.9 tubes/㎛ at rear region of the CVD chamber. We expect that the enhanced amount of thermally decomposed feedstock gas may contribute to the growth yield enhancement at the rear region. In addition, the lamina flow in the chamber also contribute to the perfect alignment of the SWNTs based on the value of gas velocity, Reynold number, and Knudsen coefficient we employed.

Keywords

References

  1. S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 363 (1993) 603-605. https://doi.org/10.1038/363603a0
  2. J. Kong, A. M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 292 (1998) 567-574. https://doi.org/10.1016/S0009-2614(98)00745-3
  3. M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Carbon nanotubes: present and future commercial applications. Science, 339 (2013) 535-539. https://doi.org/10.1126/science.1222453
  4. J. W. Kim and G. H. Jeong, Carbon nanotube growth on Invar alloy using coal tar pitch. J. Kor. Inst. Surf. Eng., 50 (2017) 516-522. https://doi.org/10.5695/JKISE.2017.50.6.516
  5. H. Liu, D. Takagi, S. Chiashi, and Y. Homma, The controlled growth of horizontally aligned single-walled carbon nanotube arrays by a gas flow process. Nanotechnol., 20 (2009) 345604. https://doi.org/10.1088/0957-4484/20/34/345604
  6. J. R. S. Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, Controlled synthesis of single-chirality carbon nanotubes. Nature, 512 (2014) 61. https://doi.org/10.1038/nature13607
  7. J. Xiao, S. Dunham, P. Liu, Y. Zhang, C. Kocabas, L. Moh, Y. Huang, K. C. Hwang, C. Lu, W. Huang, and J. A. Rogers, Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett., 9 (2009) 4311-4319. https://doi.org/10.1021/nl9025488
  8. H. Ago, K. Nakamura, K. Ikeda, N. Uehara, N. Ishigami, and M. Tsuji, Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett., 408 (2005) 433-438. https://doi.org/10.1016/j.cplett.2005.04.054
  9. M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. P. Wong, and S. Mitra, Carbon nanotube computer. Nature, 501 (2013) 526. https://doi.org/10.1038/nature12502
  10. S. H. Lee, E. H. Kwak, and G. H. Jeong, Dewetting behavior of electron-beam-deposited Au thin films on various substrates: Graphene, Quartz, and $SiO_2$ wafers. Appl. Phys. A, 118 (2015) 389396.
  11. 조성일, 수평형 열화학기상증착 반응기를 이용한 탄소나노튜브 합성 시 기판 위치에 따른 합성 거동 고찰. 석사 학위 논문, 강원대학교 (2017).
  12. C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim, and J. A. Rogers, Guided growth of lage-scale, horizontally aligned arrays of singlewalled carbon nanotubes and their use in thinfilm transistors. Small, 1 (2005) 1110-1116. https://doi.org/10.1002/smll.200500120
  13. E. H. Kwak, H. B. Im, and G. H. Jeong, Synthesis of single-walled carbon nanotubes for enhancement of horizontal-alignment and density. J. Kor. Inst. Surf. Eng., 47 (2014) 347-353. https://doi.org/10.5695/JKISE.2014.47.6.347
  14. Y. Homma, S. Suzuki, Y. Kobayashi, M. Nagase, and D. Takagi, Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy. Appl. Phys. Lett., 84 (2004) 1750. https://doi.org/10.1063/1.1667608
  15. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys. Rev. Lett., 86 (2001) 1118-1121. https://doi.org/10.1103/PhysRevLett.86.1118
  16. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Optical properties of single-wall carbon nanotubes. Synth. Met., 103 (1999) 2555-2558. https://doi.org/10.1016/S0379-6779(98)00278-1
  17. B. H. Hong, J. Y. Lee, T. Beetz, Y. Zhu, P. Kim, and K. S. Kim, Quasi-continuous growth of ultralong carbon nanotube arrays. J. Am. Chem. Soc., 127 (2005) 15336-15337. https://doi.org/10.1021/ja054454d
  18. Z. Zhou, L. Ci, L. Song, X. Yan, D. Liu, H. Yuan, Y. Gao, J. Wang, L. Liu, W. Zhou, G. Wang, and S. Xie, Random networks of singlewalled carbon nanotubes. J. Phys. Chem. B, 108 (2004) 10751-10753. https://doi.org/10.1021/jp0363949
  19. W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett., 10 (2010) 1645-1651. https://doi.org/10.1021/nl9041966