DOI QR코드

DOI QR Code

Optical Properties of Metal Halide Perovskite Nanocrystals with Addition of Metal Bromide

금속 브롬화물의 첨가에 따른 금속 할라이드 페로브스카이트 나노결정의 광학적 특성 변화

  • Yun, Seokjin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Choi, Jihoon (Department of Materials Science and Engineering, Chungnam National University)
  • 윤석진 (충남대학교 신소재공학과) ;
  • 최지훈 (충남대학교 신소재공학과)
  • Received : 2019.11.29
  • Accepted : 2019.12.24
  • Published : 2019.12.31

Abstract

Organometal halide perovskite materials have attracted much attention in the photovoltaic and light emitting devices due to the compositional flexibility with AMX3 formula (A is an organic amine cation; M is a metal ion; X is a halogen atom). The addition of homovalent or heterovalent metal cations to the bulk organohalide perovskites has been performed to modify their energy band structure and the relevant optoelectronic properties by ligand-assisted ball milling. Here, we report CH3NH3Pb1-xMxBr3 nanocrystals substituted by metallic cations (M is Sn2+, In3+, Bi3+; x = 0, 0.01, 0.02, 0.05, 0.1, 0.2). Photoluminescence and quantum yield was significantly reduced with increasing metallic cations content. These quenching effect could be resulted from the metal cations that behave as a non-radiative recombination center.

Keywords

References

  1. Yang. W. S, Noh. J. H, Jeon. N. J, Kim. Y. C, Ryu. S, Seo. J, Seok. S. I, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348 (2015) 1234-1237. https://doi.org/10.1126/science.aaa9272
  2. Xiao. Z, Kerner. R. A, Zhao. L, Tran. N. L, Lee. K. M, Koh. T. W, Scholes. G. D, Rand. B. P, Efficient perovskite light emitting diodes featuring nanometer-sized crystallites, Nat. Photonics, 11 (2017) 108-115.
  3. Bade. S. G. R, Li. J, Shan. X, Ling. Y, Tian. Y, Dilbeck. T, Besara. T, Geske. T, Gao. H, Ma. B, et al, Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes, ACS Nano, 10 (2016) 1795-1801. https://doi.org/10.1021/acsnano.5b07506
  4. Li. J, Bade. S. G. R, Shan. X, Yu. Z, Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films, Adv. Mater, 27 (2015) 5196-5202. https://doi.org/10.1002/adma.201502490
  5. Dou. L, Wong. A. B, Yu. Y, Lai. M, Kornienko. N, Eaton. S. W, Fu. A, Bischak. C. G, Ma. J, Ding. T, Ginsberg. N. S, Wang. L. W, Alivisatos. A. P, Yang. P, Atomically thin two-dimensional organic-inorganic hybrid, Science, 349 (2015) 1518-1521. https://doi.org/10.1126/science.aac7660
  6. Chen. Q, De Marco. N, Yang. Y, Song. T.-B, Chen. C.-C, Zhao. H, Hong. Z, Zhou. H, Yang. Y, Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications, Nano Today, 10 (2015) 355-396. https://doi.org/10.1016/j.nantod.2015.04.009
  7. Green. M. A, Ho-Baillie. A, Snaith. H. J, The emergence of perovskite solar cells, Nat. Photonics, 8 (2014) 506-514. https://doi.org/10.1038/nphoton.2014.134
  8. Fan. Z, Sun. K, Wang. J, Perovskites for photovoltaics: a combined review of organicinorganic halide perovskites and ferroelectric oxide perovskites, J. Mater. Chem. A, 3 (2015) 18809-18828. https://doi.org/10.1039/C5TA04235F
  9. Stoumpos. C. C, Malliakas. C. D, Kanatzidis. M. G, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem, 52 (2013) 9019-9038. https://doi.org/10.1021/ic401215x
  10. Xing. G. C, Mathews. N, Lim. S. S, Yantara. N, Liu. X, Sabba. D, Gratzel. M, Mhaisalkar. S, Sum. T. C, Low-temperature solution-processed wavelength-tunable perovskites for lasing, Nat. Mater. 13 (2014) 476-480. https://doi.org/10.1038/nmat3911
  11. Ha. S. T, Su. R, Xing. J, Zhang. Q, Xiong. Q, Metal halide perovskite nanomaterials: synthesis and applications, Chem. Sci, 8 (2017) 2522-2536. https://doi.org/10.1039/C6SC04474C
  12. Schmidt. L. C, Pertegas. A, Gonzalez-Carrero. S, Malinkiewicz. O, Agouram. S, Minguez Espallargas. G, Bolink. H. J, Galian. R. E, Perez- Prieto. J, Nontemplate synthesis of $CH_3NH_3PbBr_3$ perovskite nanoparticles, J. Am. Chem. Soc, 136 (2014) 850-852. https://doi.org/10.1021/ja4109209
  13. Zhang. F, Zhong. H, Chen. C, Wu. X.-g, Hu. X, Huang. H, Han. J, Zou. B, Dong. Y, Brightly luminescent and color-tunable colloidal $CH_3NH_3PbX_3$ (X = Br, I, Cl) quantum dots: potential alternatives for display technology, ACS Nano, 9 (2015) 4533-4542. https://doi.org/10.1021/acsnano.5b01154
  14. Sichert. J. A, Tong. Y, Mutz. N, Vollmer. M, Fischer. S, Milowska. K. Z, García Cortadella. R, Nickel. B, Cardenas-Daw. C, Stolarczyk. J. K, Urban. A. S, Feldmann. J, Quantum size effect in organometal halide perovskite nanoplatelets, Nano Lett, 15 (2015) 6521-6527. https://doi.org/10.1021/acs.nanolett.5b02985
  15. Tong. Y, Ehrat. F, Vanderlinden. W, Cardenas- Daw. C, Stolarczyk. J. K, Polavarapu. L, Dilutioninduced formation of hybrid perovskite nanoplatelets, ACS Nano, 10 (2016) 10936-10944. https://doi.org/10.1021/acsnano.6b05649
  16. Protesescu. L, Yakumin. S, Bodnarchuk. M. I, Krieg. F, Caputo. R, Hendon. C. H, Yang. R. X, Walsh. A, Kovalenko. M. C, Nanocrystals of cesium lead halide perovskites ($CsPbX_3$, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett, 15 (2015) 3692-3696. https://doi.org/10.1021/nl5048779
  17. Udayabhaskararao. T, Kazes. M, Houben. L, Lin. H, Oron. D, Nucleation, growth, and structural transformations of perovskite nanocrystals, Chem. Mater, 29 (2017) 1302-1308. https://doi.org/10.1021/acs.chemmater.6b04841
  18. Wei. S, Yang. Y, Kang. X, Wang. L, Huang. L, Pan. D, Room-temperature and gram-scale synthesis of $CsPbX_3$ (X = Cl, Br, I) perovskite nanocrystals with 50-85% photoluminescence quantum yields, Chem. Commun, 52 (2016) 7265-7268. https://doi.org/10.1039/C6CC01500J
  19. Sapori. D, Kepenekian. M, Pedesseau. L, Katan. C, Even. J, Quantum confinement and dielectric profiles of colloidal nanoplatelets of halide inorganic and hybrid organic-inorganic perovskites, Nanoscale, 8 (2016) 6369-6378. https://doi.org/10.1039/C5NR07175E
  20. Kirakosyan. A, Yun. S, Yoon. S.-G, Choi. J, Surface engineering for improved stability of $CH_3NH_3PbBr_3$ perovskite nanocrystals, Nanoscale, 10 (2018) 1885. https://doi.org/10.1039/C7NR06547G
  21. Akkerman. Q. A, D'Innocenzo. V, Accornero. S, Scarpellini. A, Petrozza. A, Prato. M, Manna. L, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions, J. Am. Chem. Soc, 137 (2015) 10276-10281. https://doi.org/10.1021/jacs.5b05602
  22. Pellet. N, Teuscher. J, Maier. J, Gra?tzel. M, Transforming hybrid organic inorganic perovskites by rapid halide exchange, Chem. Mater, 27 (2015) 2181-2188. https://doi.org/10.1021/acs.chemmater.5b00281
  23. Nedelcu. G, Protesescu. L, Yakunin. S, Bodnarchuk. M. I, Grotevent. M. J, Kovalenko. M. V, Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites ($CsPbX_3$, X = Cl, Br, I), Nano Lett, 15 (2015) 5635-5640. https://doi.org/10.1021/acs.nanolett.5b02404
  24. Shewmon. N. T, Yu. H, Constantinou. I, Klump. E, So. F, Formation of perovskite heterostructures by ion exchange, ACS Appl. Mater. Interfaces, 8 (2016) 33273-33279. https://doi.org/10.1021/acsami.6b10034
  25. Eperon. G. E, Beck. C. E, Snaith. H. J, Cation exchange for thin film lead iodide perovskite interconversion, Mater. Horiz, 3 (2016) 63-71. https://doi.org/10.1039/C5MH00170F
  26. Niemann. R. G, Gouda. L, Hu. J, Tirosh. S, Gottesman. R, Cameron. P. J, Zaban. A, $Cs^+$ incorporation into $CH_3NH_3PbI_3$ perovskite: Substitution limit and stability enhancement, J. Mater. Chem. A, 4 (2016) 17819-17827. https://doi.org/10.1039/C6TA05869H
  27. Hu. Y, Schlipf. J, Wussler. M, Petrus. M. L, Jaegermann. W, Bein. T, Mu?ller-Buschbaum. P, Docampo. P, Hybrid perovskite/perovskite heterojunction solar cells, ACS Nano, 10 (2016) 5999-6007 https://doi.org/10.1021/acsnano.6b01535
  28. Yun. S, Kirakosyan. A, Yoon. S.-G, Choi. J, Scalable synthesis of exfoliated organometal halide perovskite nanocrystals by ligand-assisted ball milling, ACS Sustain. Chem, Eng, 6 (2018) 3733-3738. https://doi.org/10.1021/acssuschemeng.7b04092
  29. Luo. S, Daoud. W. A, Crystal structure formation of $CH_3NH_3PbI_{3-x}Cl_x$ perovskite, Materials, 9 (2016) 123. https://doi.org/10.3390/ma9030123
  30. Weidman. M. C, Seitz. M, Stranks. S. D, Tisdale. W. A, Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition, ACS Nano, 10 (2016) 7830-7839. https://doi.org/10.1021/acsnano.6b03496