DOI QR코드

DOI QR Code

PDMS로 충진된 신축열전모듈의 신축특성과 발전특성

Stretchable Characteristics and Power Generation Properties of a Stretchable Thermoelectric Module Filled with PDMS

  • 한기선 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Han, Kee Sun (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 투고 : 2019.12.13
  • 심사 : 2019.12.27
  • 발행 : 2019.12.30

초록

5쌍의 Bi2Te3계 p-n 가압소결체 열전레그들로 구성되어 있으며 상하부 기판이 없고 내부는 polydimethylsiloxane (PDMS)로 충진되어 있는 신축열전모듈을 형성하고, 이의 신축특성과 발전특성을 분석하였다. 신축열전모듈에 변형률 0~0.1 범위의 신축변형 싸이클을 10회 인가하여도 모듈의 integrity가 잘 유지되었으며, 인장변형률이 0.2로 증가시 Cu 전극과 열전레그 사이의 접합부 파단에 의해 모듈이 open 되었다. 신축열전모듈은 열전레그 양단간의 온도차가 2.2 K일 때 4.6 mV의 open circuit 전압을 나타내었으며, 변형률 0~0.1 범위의 인장변형에 의한 open circuit 전압의 변화는 5% 미만이었다. 신축열전모듈은 0.1의 변형률로 인장된 상태에서 레그 양단간 온도차 2.2 K에 의해 18.5 ㎼의 최대발전출력을 나타내었다.

A stretchable thermoelectric module consisting of 5 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs was processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its stretchable characteristics and power generation properties were measured. The integrity of the module was kept well even after 10 strain cycles ranging from 0 to 0.1. With increasing the tensile strain to 0.2, the module circuitry became open because of joint failure between Cu electrodes and thermoelectric legs. The stretchable thermoelectric module exhibited an open circuit voltage of 4.6 mV with a temperature difference of 2.2K across both ends of thermoelectric legs, and changes in its open circuit voltage were below 5% for tensile strains of 0~0.1. Being elongated for a strain of 0.1, it exhibited the maximum output power of 18.5 ㎼ with the temperature difference of 2.2K across its both ends.

키워드

참고문헌

  1. J. H. Kim, W. J. Kim, and T. S. Oh, "Thermoelectric Thin Film Devices for Energy Harvesting with the Heat Dissipated from High-power Light-emitting Diodes", J. Electron. Mater., 45(7), 3410 (2016). https://doi.org/10.1007/s11664-016-4485-6
  2. R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, "Micropower Energy Harvesting", Solid-State Electron., 53, 684 (2009). https://doi.org/10.1016/j.sse.2008.12.011
  3. T. Huesgen, P. Woias, and N. Kockmann, "Design and Fabrication of MEMS Thermoelectric Generators with High Temperature Efficiency". Sens. Actuators A, 145-146, 423 (2008). https://doi.org/10.1016/j.sna.2007.11.032
  4. W. Wang, V. Cionca, N. Wang, M. Hayes, B. O'Flynn, and C. O'Mathuna, "Thermoelectric Energy Harvesting for Building Energy Management Wireless Sensor Networks", Inter. J. Distrib. Sens. Netw., 2013, 232438 (2013). https://doi.org/10.1155/2013/232438
  5. W. Glatz, S. Muntwyler, and C. Hierold, "Optimization and Fabrication of Thick Flexible Polymer Based Micro Thermoelectric Generator", Sens. Actuators A, 132, 337 (2006). https://doi.org/10.1016/j.sna.2006.04.024
  6. A. Sharma, J. H. Lee, K. H. Kim, and J. P. Jung, "Recent Advances in Thermoelectric Power Generation Technology", J. Microelectron. Packag. Soc., 24(1), 9 (2017). https://doi.org/10.6117/kmeps.2017.24.1.009
  7. T. S. Oh, "Fabrication Process and Power Generation Characteristics of Thermoelectric Thin Film Devices for Micro Energy Harvesting", J. Microelectron. Packag. Soc., 25(3), 67 (2018). https://doi.org/10.6117/KMEPS.2018.25.3.067
  8. W. J. Kim, and T. S. Oh, "Comparison of Thermal Energy Harvesting Characteristics of Thermoelectric Thin-Film Modules with Different Thin-Film Leg Diameters", J. Microelectron. Packag. Soc., 25(4), 67 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.067
  9. K. J. Shin, and T. S. Oh, "Micro-Power Generation Characteristics of Thermoelectric Thin Film Devices Processed by Electrodeposition and Flip-Chip Bonding", J. Electron. Mater., 44(6), 2026 (2015). https://doi.org/10.1007/s11664-015-3647-2
  10. K. J. Shin, and T. S. Oh, "Thermoelectric Power-Generation Characteristics of a Thin-Film Device Processed by the Flip-Chip Bonding of $Bi_2Te_3$ and $Sb_2Te_3$ Thin-Film Legs Using an Anisotropic Conductive Adhesive", Mater. Trans., 56(10), 1719 (2015). https://doi.org/10.2320/matertrans.M2015236
  11. V. Leonov, T. Torfs, P. Fiorini, and C. Van Hoof, "Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes", IEEE Sens. J., 7(5), 650 (2007). https://doi.org/10.1109/JSEN.2007.894917
  12. K. S. Han, and T. S. Oh, "Power Generation Properties and Bending Characteristics of a Flexible Thermoelectric Module Fabricated using PDMS Filling Method", submitted to J. Microelectron. Packag. Soc. (2019).
  13. D. Park and T. S. Oh, "Interfacial Adhesion Enhancement Process of Local Stiffness-Variant Stretchable Substrates for Stretchable Electronic Packages", J. Microelectron. Packag. Soc., 25(4), 111 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.111
  14. D. Park, and T. S. Oh, "Flip Chip Process on the Local Stiffness- Variant Stretchable Substrate for Stretchable Electronic Packages", J. Microelectron. Packag. Soc., 25(4), 155 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.155
  15. J. H. Ahn, and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
  16. D. H. Kim, and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). https://doi.org/10.1002/adma.200801788
  17. S. H. Lee, H. Shen, and S. Han, "Flexible Thermoelectric Module Using Bi-Te and Sb-Te Thin Films for Temperature Sensors", J. Electron. Mater., 48(9), (2019).
  18. Y. Du, J. Xu, B. Paul, and P. Eklund, "Flexible Thermoelectric Materials and Devices", Appl. Mater. Today, 12, 366 (2018). https://doi.org/10.1016/j.apmt.2018.07.004
  19. S. Zhang, Z. Fan, X. Wang, Z. Zhang, and J. Ouyang, "Enhancement of the Thermoelectric Properties of PEDOT:PSS via One-Step Treatment with Cosolvents or Their Solutions of Organic Salts", J. Mater. Chem., A6, 7080 (2018).
  20. R. Maeda, H. Kawakami, Y. Shinohara, I. Kanazawa, and M. Mitsuishi, "Thermoelectric Properties of PEDOT/PSS Films Prepared by a Gel-Film Formation Process", Mater. Lett., 251, 169 (2019). https://doi.org/10.1016/j.matlet.2019.05.005
  21. D. Park, and T. S. Oh, "Flip Chip Process on the Local Stiffness- Variant Stretchable Substrate for Stretchable Electronic Packages", J. Microelectron. Packag. Soc., 25(4), 155 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.155
  22. T. S. Oh, D. B. Hyun, and N. V. Kolomoets, "Thermoelectric Properties of the Hot-Pressed $(Bi,Sb)_2(T3,Se)_3$ Alloys", Scripta Meter., 42, 849 (2000). https://doi.org/10.1016/S1359-6462(00)00302-X
  23. H. J. Kim, H. C. Kim, D. B. Hyun, and T. S. Oh, "Thermoelectric Properties of p-Type $(Bi,Sb)_2Te_3$ Alloys Fabricated by the Hot Pressing Method", Met. Mater., 4(1), 75 (1998). https://doi.org/10.1007/BF03026068
  24. B. Y. Jung, T. S. Oh, D. B. Hyun, and J. D. Shim, "Thermoelectric Properties of $(Bi_{0.25}Sb_{0.75})_2Te_3$ Prepared by Mechanical Allying and Hot Pressing", J. Korean Phys. Soc., 31(1), 219 (1997).
  25. H. C. Kim, B. Y. Jung, D. B. Hyun, and T. S. Oh, "Mechanical Alloying Process and Thermoelectric Properties of p-Type $(Bi_{1-x}Sb_x)_2Te_3$", J. Korean Inst. Met. Mater., 36(3), 416 (1998).
  26. B. Y. Jung, T. S. Oh, S. E. Nam, D. B. Hyun, and J. D. Shim, "Thermoelectric Properties of p-Type $(Bi_{0.25}Sb_{0.75})_2Te_3$ Fabricated by Mechanical Allying Process", J. Korean Inst. Met. Mater., 35(1), 153 (1997).
  27. D. B. Hyun, J. S. Hwang, J. D. Shim, and T. S. Oh, "Thermoelectric Properties of $(Bi_{0.25}Sb_{0.75})_2Te_3$ Alloys Fabricated by Hot-Pressing Method", J. Mater. Sci., 36, 1285 (2001). https://doi.org/10.1023/A:1004862700211
  28. H. J. Kim, T. S. Oh, and D. B. Hyun, "Thermoelectric Properties of the Hot-Pressed $Bi_2(Te_{1-x}Se_x)_3$ Alloys with the $Bi_2Se_3$ Content", Korean J. Mater. Res., 8(5), 408 (1998).
  29. H. J. Kim, J. S. Choi, D. B. Hyun, and T. S. Oh, "Powder Characteristics and Thermoelectric Properties of n-Type $Bi_2(Te_{0.95}Se_{0.05})_3$ Fabricated by Mechanical Alloying Process", J. Korean Inst. Met. Mater., 35(2), 223 (1997).
  30. H. J. Kim, J. S. Choi, D. B. Hyun, and T. S. Oh, "Microstructure and Thermoelectric Properties of n-Type $Bi_2(Te_{0.95}Se_{0.05})_3$ Fabricated by Mechanical Alloying Process and Hot Pressing Methods", Korean J. Mater. Res., 7(1), 40 (1997).
  31. J. Y. Choi, D. W. Park, and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014). https://doi.org/10.6117/kmeps.2014.21.4.125
  32. I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, "Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering", J. Micromech. Microeng., 24, 035017 (2014). https://doi.org/10.1088/0960-1317/24/3/035017
  33. I. Wong, and C. M. Ho, "Surface Molecular Property Modifications for Poly(dimethylsilicone) (PDMS) Based Microfluidic Devices", Microfluid Nanofluid, 7, 291 (2009). https://doi.org/10.1007/s10404-009-0443-4
  34. F. Schneider, T. Fellner, J. Wilde and U. Wallrabe, "Mechanical Properties of Silicones for MEMS", J. Micromech. Microeng., 18, 065008 (2008). https://doi.org/10.1088/0960-1317/18/6/065008
  35. K. Khanafer, A. Duprey, M. Schlicht, and R. Berguer, "Effects of Strain Rate, Mixing Ratio, and Stress-Strain Definition on the Mechanical Behavior of the Polydimethylsiloxane (PDMS) Materials as Related to Its Biological Applications", Biomed Microdevices, 11, 503 (2009). https://doi.org/10.1007/s10544-008-9256-6
  36. J. H. Seo, K. Sakai, and N. Yui, "Adsorption State of Fibronectin on Poly(dimethylsiloxane) Surfaces with Varied Stiffness Can Dominate Adhesion Density of Fibroblasts", Acta Biomater., 9(3), 5493 (2013). https://doi.org/10.1016/j.actbio.2012.10.015