DOI QR코드

DOI QR Code

The Protective and Inhibitory Effect of Antioxidants Found in Broussonetia kazinoki Siebold against Oxidative DNA Damage

  • Jang, Tae-Won (Department of Medicinal Plant Resources, Andong National University) ;
  • Choi, Ji-Soo (Department of Medicinal Plant Science, Jungwon University) ;
  • Kim, Hoi-Ki (Fanipinkorea Co., Ltd) ;
  • Lee, Eun-Ja (Fanipinkorea Co., Ltd) ;
  • Lee, Ki-Beom (Incheon Business Information Technopark. Biotechnology & Business Center) ;
  • Kwon, Tae-Hyung (Department of Research and Development, Chuncheon Bioindustry Foundation) ;
  • Kim, Do-Wan (Department of Food Science and Industry, Jungwon University) ;
  • Ahn, Jeong-Jwa (Department of Food Science and Industry, Jungwon University) ;
  • Park, Jae-Ho (Department of Pharmaceutical Science, Jungwon University)
  • 투고 : 2019.10.22
  • 심사 : 2019.12.13
  • 발행 : 2019.12.31

초록

Oxidative DNA damage negatively affects humans and the research is currently ongoing to find ways to reduce oxidative stress. Oxidative stress has been identified as a key factor in triggering various diseases. Thus, its alleviation is important for human health. Broussonetia kazinoki (B. kazinoki) has been used in traditional Korean medicine as a dermatological therapy to treat burns, pruritus, and acne. B. kazinoki is generally segregated into peeled root (PR), root bark (RB), peeled stem (PS), and stem bark (SB). To assess these components for their antioxidant activity and protection against DNA damage, their ethyl acetate fractions were examined by 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assay. As a result of confirming the expression of factors involved in attenuating DNA damage, the protective effect of SB on oxidative stress suppressed the expression of p-p53 and γ-H2AX. Additionally, the levels of p53 and H2AX mRNA were significantly downregulated. In conclusion, these results indicated that the SB component of B. kazinoki had the potential to be used as an effective natural antioxidant compared to the other parts of the plant.

키워드

참고문헌

  1. Alvarez-Idaboy, J.R. and A. Galano. 2012. A. On the chemical repair of DNA radicals by glutathione: Hydrogen vs. electron transfer. J. Phys. Chem. B. 116(31):9316-9325. https://doi.org/10.1021/jp303116n
  2. AOAC. 1995. Official Methods of Analysis. 14th ed, Association of Official Analytical Chemists, Washington DC, USA. pp. 8-35.
  3. Attaguile, G., A. Russo, A. Campisi, F. Savoca, R. Acquaviva, N. Ragusa and A. Vanella. 2000. Antioxidant activity and protective effect on DNA cleavage of extracts from Cistus incanus L. and Cistus monspeliensis L. Cell Biol Toxicol. 16(2):83-90. https://doi.org/10.1023/A:1007633824948
  4. Bae, U.J., Y.L. Da, M.Y. Song, S.M. Lee, J.W. Park, J.H. Ryu and B.H. Park. 2011. A prenylated flavan from Broussonetia kazinoki prevents cytokine-induced ${\beta}$-cell death through suppression of nuclear factor-${\kappa}$B activity. Biol. Pharm. Bull. 34(7):1026-1031. https://doi.org/10.1248/bpb.34.1026
  5. Baek, Y.S., Y.B. Ryu, M.J. Curtis-Long, T.J. Ha, R. Rengasamy, M.S. Yang and K.H. Park. 2009. Tyrosinase inhibitory effects of 1, 3-diphenylpropanes from Broussonetia kazinoki. Bioorg. Med. Chem. 17(1):35-41. https://doi.org/10.1016/j.bmc.2008.11.022
  6. Bellon, S., J.L. Ravanat, D. Gasparutto and J. Cadet. 2002. Cross-linked thymine-purine base tandem lesions: Synthesis, characterization, and measurement in ${\gamma}$-irradiated isolated DNA. Chem. Res. Toxicol. 15(4):598-606. https://doi.org/10.1021/tx015594d
  7. Bondet, V., W. Brand-Williams and C. Berset. 1997. Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. LWT Food Sci. Technol. 30(6):609-615. https://doi.org/10.1006/fstl.1997.0240
  8. Box, H.C., E.E. Budzinski, J.B. Dawidzik, J.S. Gobey and H.G. Freund. 1997. Free radical-induced tandem base damage in DNA oligomers. Free Radic. Biol. Med. 23(7):1021-1030. https://doi.org/10.1016/S0891-5849(97)00166-4
  9. Circu, M.L. and T.Y. Aw. 2010. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48(6):749-762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022
  10. Crean, C., Y. Uvaydov, N.E. Geacintov and V. Shafirovich. 2008. Oxidation of single-stranded oligonucleotides by carbonate radical anions: Generating intrastrand cross-links between guanine and thymine bases separated by cytosines. Nucleic Acids Res. 36(3):742-755. https://doi.org/10.1093/nar/gkm1092
  11. Dinstel, R.R., J. Cascio and S. Koukel. 2013. The antioxidant level of Alaska's wild berries: High, higher and highest. Int. J. Circumpolar Health. 72.
  12. Fernandez-Capetillo, O., A. Lee, M. Nussenzweig and A. Nussenzweig. 2004. H2AX: the histone guardian of the genome. DNA Repair 3(8-9):959-967. https://doi.org/10.1016/j.dnarep.2004.03.024
  13. Galano, A., M.E. Medina, D.X. Tan and R.J. Reiter. 2015. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis. J. Pineal Res. 58(1):107-116. https://doi.org/10.1111/jpi.12196
  14. Han, H.M., Y.S. Kwon and M.J. Kim. 2016. Antioxidant and antiproliferative activity of extracts from water chestnut (Trapa japonica Flerow). Kor. J. Med. Crop Sci. 24(1):14-20. https://doi.org/10.7783/KJMCS.2016.24.1.14
  15. Jang, T.W. and J.H. Park. 2018. Antioxidant activity and inhibitory effects on oxidative DNA damage of callus from Abeliophyllum distichum Nakai. Korean J. Plant Res. 31(3):228-236. https://doi.org/10.7732/KJPR.2018.31.3.228
  16. Kim, T.H., D.H. Kim, Y.J. Mun, K.S. Lim and W.H. Woo. 2016. Extract of Broussometia kazinoki Induces Apoptosis Through the Mitochondria/Caspase Pathway in A549 Lung Cancer Cells. J Physiol & Pathol Korean Med. 30(3):150-156. https://doi.org/10.15188/kjopp.2016.06.30.3.150
  17. Kong, Y.J., B.K. Park and D.H. Oh. 2001. Antimicrobial activity of Quercus mongolica leaf ethanol extract and organic acids against food-borne microorganisms. Kor. J. Food Sci. Technol. 33(2):178-183.
  18. Lee, H., H. Ha, J.K. Lee, S.J. Park, S.I. Jeong and H.K. Shin. 2014. The leaves of Broussonetia kazinoki siebold inhibit atopic dermatitis-like response on mite allergen-treated Nc/Nga mice. Biomol. Ther. 22(5):438-444. https://doi.org/10.4062/biomolther.2014.023
  19. Lee, H.J., J.H. Park, D.I. Jang and J.H. Ryu. 1997. Antioxidant components from Broussonetia kazinoki. J. Pharm. Soc. Kor. 41(4):439-443.
  20. Lee, T.B. 2003. Coloured Flora of Korea. Hayangmunsa. Seoul, Korea. pp. 223-223.
  21. Leinisch, F., M. Mariotti, M. Rykaer, C. Lopez-Alarcon, P. Hagglund and M.J. Davies. 2017. Peroxyl radical-and photo-oxidation of glucose 6-phosphate dehydrogenase generates cross-links and functional changes via oxidation of tyrosine and tryptophan residues. Free Radic. Biol. Med. 112:240-252. https://doi.org/10.1016/j.freeradbiomed.2017.07.025
  22. Marechal, A. and L. Zou. 2013. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 5(9):a012716. https://doi.org/10.1101/cshperspect.a012716
  23. Maxwell, S.R.J. 1995. Prospects for the use of antioxidant therapies. Drugs 49(3):345-361. https://doi.org/10.2165/00003495-199549030-00003
  24. Meir, S., J. Kanner, B. Akiri and S. Philosoph-Hadas. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J. Agric. Food Chem. 43(7):1813-1819. https://doi.org/10.1021/jf00055a012
  25. Minko, I.G., I.D. Kozekov, T.M. Harris, C.J. Rizzo, R.S. Lloyd and M.P. Stone. 2009. Chemistry and biology of DNA containing 1, N 2-deoxyguanosine adducts of the ${\alpha}$, ${\beta}$- unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxynonenal. Chem. Res. Toxicol. 22(5):759-778. https://doi.org/10.1021/tx9000489
  26. Mustafa, R., A.A. Hamid, S. Mohamed and F.A. Bakar. 2010. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. J. Food Sci. 75(1):C28-C35. https://doi.org/10.1111/j.1750-3841.2009.01401.x
  27. Paull, T.T., E.P. Rogakou, V. Yamazaki, C.U. Kirchgessner, M. Gellert and W.M. Bonner. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10(15):886-895. https://doi.org/10.1016/S0960-9822(00)00610-2
  28. Pisoschi, A.M., M.C. Cheregi and A.F. Danet. 2009. Total antioxidant capacity of some commercial fruit juices: electrochemical and spectrophotometrical approaches. Molecules 14(1):480-493. https://doi.org/10.3390/molecules14010480
  29. Prasad, K.N., L.Y. Chew, H.E. Khoo, K.W. Kong, A. Azlan and A. Ismail. 2010. Antioxidant capacities of peel, pulp, and seed fractions of Canarium odontophyllum Miq. fruit. J. Biomed. Biotechnol. 2010:8.
  30. Que, F., L. Mao and X. Pan. 2006. Antioxidant activities of five Chinese rice wines and the involvement of phenolic compounds. Food Res. Int. 39(5):581-587. https://doi.org/10.1016/j.foodres.2005.12.001
  31. Reiter, R.J., L.C. Manchester and D.X. Tan. 2010. Neurotoxins: free radical mechanisms and melatonin protection. Curr. Neuropharmacol. 8(3):194-210. https://doi.org/10.2174/157015910792246236
  32. Reiter, R.J., D.X. Tan and A. Galano. 2014. Melatonin: exceeding expectations. Physiology 29(5):325-333. https://doi.org/10.1152/physiol.00011.2014
  33. Roos, W.P., A.D. Thomas and B. Kaina. 2016. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer. 16(1):20-33. https://doi.org/10.1038/nrc.2015.2
  34. Sablina, A.A., A.V. Budanov, G.V. Ilyinskaya, L.S. Agapova, J.E. Kravchenko and P.M. Chumakov. 2005. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11(12):1306-1313. https://doi.org/10.1038/nm1320
  35. Sen, S., R. Chakraborty, C. Sridhar, Y. Reddy and B. De. 2010. Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int, J. Pharm. Sci. Rev. Res. 3(1):91-100.
  36. Shibata, A. and P. Jeggo. 2014. DNA double-strand break repair in a cellular context. Clin. Oncol. 26(5):243-249. https://doi.org/10.1016/j.clon.2014.02.004
  37. Uvaydov, Y., N.E. Geacintov and V. Shafirovich. 2014. Generation of guanine-amino acid cross-links by a free radical combination mechanism. PCCP. 16(23):11729-11736. https://doi.org/10.1039/C4CP00675E
  38. Van den Berg, R., G.R. Haenen, H. van den Berg and A. Bast. 1999. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66(4):511-517. https://doi.org/10.1016/S0308-8146(99)00089-8
  39. Valko, M., H. Morris and M. Cronin. 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem. 12(10):1161-1208. https://doi.org/10.2174/0929867053764635
  40. Wiseman, H. and B. Halliwell. 1996. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313(1):17-29. https://doi.org/10.1042/bj3130017
  41. Yoo, I.D., J.P. Kim, W.G. Kim, B.S. Yun and I.J. Ryoo. 2005. Development of new natural antioxidants for cosmeceuticals. J. Soc. Cosmet. Sci. Kor. 31(4):349-357.
  42. Yu, Y., Y. Cui, L.J. Niedernhofer and Y. Wang. 2016. Occurrence, biological consequences, and human health relevance of oxidative stress-induced DNA damage. Chem. Res. Toxicol. 29(12):2008-2039. https://doi.org/10.1021/acs.chemrestox.6b00265
  43. Zhang, Q. and Y. Wang. 2003. Independent generation of 5-(2'-deoxycytidinyl) methyl radical and the formation of a novel cross-link lesion between 5-methylcytosine and guanine. J. Am. Chem. Soc. 125(42):12795-12802. https://doi.org/10.1021/ja034866r
  44. Zeng, Y. and Y. Wang. 2007. UVB-induced formation of intrastrand cross-link products of DNA in MCF-7 cells treated with 5-bromo-2'-deoxyuridine. Biochemistry 46(27):8189-8195. https://doi.org/10.1021/bi700431q