DOI QR코드

DOI QR Code

Interfacial Charge Transport Anisotropy of Organic Field-Effect Transistors Based on Pentacene Derivative Single Crystals with Cofacial Molecular Stack

코페이셜 적층 구조를 가진 펜타센 유도체 단결정기반 유기트랜지스터의 계면 전하이동 이방성에 관한 연구

  • Choi, Hyun Ho (School of Materials Science and Engineering, Gyeongsang National University)
  • 최현호 (경상대학교 나노신소재공학부)
  • Received : 2019.12.05
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

Understanding charge transport anisotropy at the interface of conjugated nanostructures basically gives insight into structure-property relationship in organic field-effect transistors (OFET). Here, the anisotropy of the field-effect mobility at the interface between 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) single crystal with cofacial molecular stacks in a-b basal plane and SiO gate dielectric was investigated. A solvent exchange method has been used in order for TIPS-pentacene single crystals to be grown on the surface of SiO2 thin film, corresponding to the charge accumulation at the interface in OFET structure. In TIPS-pentacene OFET, the anisotropy ratio between the highest and lowest measured mobility is revealed to be 5.2. By analyzing the interaction of a conjugated unit in TIPS-pentacene with the nearest neighbor units, the mobility anisotropy can be rationalized by differences in HOMO-level coupling and hopping routes of charge carriers. The theoretical estimation of anisotropy based on HOMO-level coupling is also consistent with the experimental result.

공액분자 나노구조체 계면에서의 전하이동 이방성을 이해하는 것은 유기전계효과트랜지스터(OFET)에서 구조-물성 상관관계를 규명하는데 중요하다. 본 연구에서는 대표적인 코페이셜 적층구조를 가진 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) 유기반도체 단결정과 산화물 계면에서 전하이동도 이방성을 연구하였다. 용매치환공정을 이용해 유기단결정을 산화실리콘 절연체 표면에 성장시키고 유기단결정/산화물 계면에서 전하이동을 유도할 수 있도록 OFET 소자를 완성하였다. TIPS-pentacene OFET에서 최고/최저 전하이동도 이방성은 5.2로 관찰되었다. TIPS-pentacene의 전하이동을 담당하는 공액부의 최인접부와의 상호작용을 분석한 결과, HOMO 준위 커플링과 전하의 호핑 궤도가 전하이동도 이방성에 기여하는 것으로 밝혀졌다. HOMO 준위 커플링에 기반한 전하이동도 이방성의 정량적 예측은 실험결과와 유사하게 나타났다.

Keywords

References

  1. H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science, 318, 426 (2007). https://doi.org/10.1126/science.1147241
  2. H. Lee, N. F. Scherer, P. B. Messersmith, Proc. Natl. Acad. Sci., 103, 12999 (2006). https://doi.org/10.1073/pnas.0605552103
  3. T. S. Sileika, D. G. Barrett, R. Zhang, K. H. A. Lau, P. B. Messersmith, Angew. Chemie - Int. Ed., 52, 10766 (2013). https://doi.org/10.1002/anie.201304922
  4. X. Zhang, Y. Lv, H. C. Yang, Y. Du, Z. K. Xu, ACS Appl. Mater. Interfaces, 8, 32512 (2016). https://doi.org/10.1021/acsami.6b10693
  5. X. Zhang, P. F. Ren, H. C. Yang, L. S. Wan, Z. K. Xu, Appl. Surf. Sci., 360, 291 (2016). https://doi.org/10.1016/j.apsusc.2015.11.015
  6. K. Liu, H. Li, Y. Wang, X. Gou, Y. Duan, Colloids Surfaces A Physicochem. Eng. Asp., 477, 35 (2015). https://doi.org/10.1016/j.colsurfa.2015.03.048
  7. X. Zhang, M. Liu, X. Zhang, F. Deng, C. Zhou, J. Hui, W. Liu, Y. Wei, Toxicol. Res., 4, 160 (2015). https://doi.org/10.1039/C4TX00066H
  8. D. Payra, M. Naito, Y. Fujii, Y. Nagao, Chem. Commun., 52, 312 (2016). https://doi.org/10.1039/c5cc07090b
  9. S. Huang, Y. Zhang, J. Shi, W. Huang, ACS Sustain. Chem. Eng., 4, 676 (2016). https://doi.org/10.1021/acssuschemeng.6b00149
  10. H. Ejima, J. J. Richardson, K. Liang, J. P. Best, M. P. Van Koeverden, G. K. Such, J. Cui, F. Caruso, Science, 341, 154 (2013). https://doi.org/10.1126/science.1237265
  11. J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner, J. J. Richardson, Y. Yan, K. Peter, D. Von Elverfeldt, C. E. Hagemeyer, F. Caruso, Angew. Chemie - Int. Ed., 53, 5546 (2014). https://doi.org/10.1002/anie.201311136
  12. J. H. Park, K. Kim, J. Lee, J. Y. Choi, D. Hong, S. H. Yang, F. Caruso, Y. Lee, I. S. Choi, Angew. Chemie - Int. Ed., 53, 12420 (2014). https://doi.org/10.1002/anie.201405905
  13. T. G. Shutava, M. D. Prouty, V. E. Agabekov, Y. M. Lvov, Chem. Lett., 35, 1144 (2006). https://doi.org/10.1246/cl.2006.1144
  14. I. Erel-Unal, S. A. Sukhishvili, Macromolecules, 41, 3962 (2008). https://doi.org/10.1021/ma800186q
  15. V. Kozlovskaya, E. Kharlampieva, I. Drachuk, D. Cheng, V. V. Tsukruk, Soft Matter, 6, 3596 (2010). https://doi.org/10.1039/b927369g
  16. B.-S. Kim, H. Lee, Y. Min, Z. Poon, P. T. Hammond, Chem. Commun., 28, 4194 (2009).
  17. M. V. Lomova, A. I. Brichkina, M. V. Kiryukhin, E. N. Vasina, A. M. Pavlov, D. A. Gorin, G. B. Sukhorukov, M. N. Antipina, ACS Applied .Mater. Inter., 7, 11732 (2015). https://doi.org/10.1021/acsami.5b03263
  18. E. Kilic, M. V. Novoselova, S. H. Lim, N. A. Pyataev, S. I. Pinyaev, O. A. Kulikov, O. A. Sindeeva, O. A. Mayorova, R. Murney, M. N. Antipina, B. Haigh, G. B. Sukhorukov, M. V. Kiryukhin, Sci. report, 7, 4159 (2017). https://doi.org/10.1038/s41598-017-04625-5
  19. A. Shukla, J. C. Fang, S. Puranam, F. R. Jensen, P. T. Hammond, Adv. Mater., 24, 492 (2012). https://doi.org/10.1002/adma.201103794
  20. X. F. Huang, J. W. Jia, Z. K. Wang, Q. L. Hu, Chinese J. Polym. Sci., 33, 284 (2015). https://doi.org/10.1007/s10118-015-1580-8
  21. M. Shin, J. H. Ryu, J. P. Park, K. Kim, J. W. Yang, H. Lee, Adv. Funct. Mater., 25, 1270 (2015). https://doi.org/10.1002/adfm.201403992
  22. K. Kim, M. Shin, M. Y. Koh, J. H. Ryu, M. S. Lee, S. Hong, H. Lee, Adv. Funct. Mater., 25, 2402 (2015). https://doi.org/10.1002/adfm.201500034
  23. M. Shin, K. Kim, W. Shim, J. W. Yang, H. Lee, ACS Biomater. Sci. Eng., 2, 687 (2016). https://doi.org/10.1021/acsbiomaterials.6b00051
  24. M. Dierendonck, K. Fierens, R. De Rycke, L. Lybaert, S. Maji, Z. Zhang, Q. Zhang, R. Hoogenboom, B. N. Lambrecht, J. Grooten, J. P. Remon, S. D. Koker, B. G. D. Geest, Adv. Funct. Mater., 24, 4634 (2014). https://doi.org/10.1002/adfm.201400763
  25. M. Shin, H. A. Lee, M. Lee, Y. Shin, J. J. Song, S. W. Kang, D. H. Nam, E. J. Jeon, M. Cho, M. Do, S. Park, M. S. Lee, J. Jang, S. Cho, K. Kim, H. Lee, Nat. Biomed. Eng., 2, 304 (2018). https://doi.org/10.1038/s41551-018-0227-9