DOI QR코드

DOI QR Code

저온처리에 따른 국내 상록활엽수종의 내한성 비교 평가

The Comparative Assessment of Cold Tolerance of Broad-leaved Evergreen Trees by Low Temperature Treatment

  • 진언주 (국립산림과학원 산림바이오소재연구소) ;
  • 윤준혁 (국립산림과학원 산림바이오소재연구소) ;
  • 배은지 (국립산림과학원 산림바이오소재연구소) ;
  • 최명석 (경상대학교 환경산림과학부&농업생명과학연구원)
  • Jin, Eon-Ju (Forest Bio materials Research Center, National Institute of Forest Science) ;
  • Yoon, Jun Hyuck (Forest Bio materials Research Center, National Institute of Forest Science) ;
  • Bae, Eun-Ji (Forest Bio materials Research Center, National Institute of Forest Science) ;
  • Choi, Myung Suk (Division of Environmental Forest Science, Gyeongsang National University & Institute of Agriculture of Life Science)
  • 투고 : 2019.07.11
  • 심사 : 2019.11.12
  • 발행 : 2019.12.31

초록

본 연구는 기후변화에 대응하여 광범위한 지역에서 가로수 식재에 활용 가능한 상록활엽수를 선발하기 위한 연구의 일환으로서 국내 남부지역에서 생육하는 굴거리나무, 녹나무, 동백나무, 다정큼나무, 종가시나무, 후박나무, 황칠나무 등 7수종에 대하여 내한성을 비교하기 위해 수행되었다. 저온처리에 따른 7종 상록활엽수의 전해질 용출을 측정한 결과 처리 온도가 낮아질수록 값이 증가하였고, 전해질 용출량과 처리 온도와의 관계를 비선형회귀를 통하여 분석한 결과 도출된 함수들은 S자 반응곡선의 형태로 나타났다. 예측치사 온도를 통하여 수종별 내한성을 분석한 결과 동백나무(-11.586℃)> 다정큼나무(-9.348℃)> 종가시나무(-8.719℃)> 후박나무(-8.090℃)> 굴거리나무(-7.409℃)> 황칠나무(-7.085℃)> 녹나무(-6.995℃) 순으로 조사되었다. 앞서 평가한 것처럼 국내 남부지역의 동일한 지역에서 생육하는 7종 상록활엽수들 중에서도 상대적 내한성 차이가 5℃ 이상을 나타냈고 동일한 과에 속하는 종간에서도 녹나무과는 내한성 차이가 2℃ 이상을 나타냈다. 내한성이 강한 우수 수종을 분석한 결과 종가시나무, 동백나무, 다정큼나무이며 이들은 중부지역 도시들에서 외부 온도 조건으로 생존 가능성을 평가할 필요가 있다고 판단된다.

The aim of the present study was to compare the cold tolerance of seven different types of trees growing in southern Korea to select evergreen broad-leaved trees that can be used as street trees in large land areas experiencing climate change. The trees compared were the thorn tree, Cinnamomum camphora, Camellia japonica, Machilus thunbergii, Dendropanax morbifera, Daphniphyllum macropodum Miq., Quercus glauca Thunb., and Raphiolepis indica. When the trees were subjected to low temperature treatment, their electrolyte elution volume values appeared to increase with the decreases in the treatment temperature. The analysis of the cold tolerance of each type of tree was based on the estimated temperatures in the following order: C. japonica (-11.586℃) > R. indica (-9.348℃) > Q. glauca (-8.719℃) > M. thunbergii (-8.090℃) > D. macropodum (-7.409℃) > D. morbifera (-7.085℃) > C. camphora (-6.995℃). The relative cold tolerance difference found in the seven tree species was more than 5℃, as evaluated previously. In the Lauraceae family, the difference in cold tolerance was more than 2℃, even in the same species. The analysis showed that trees with excellent cold tolerance included Q. glauca Thunb., C. japonica, R. indica, and the thorn tree. This knowledge is required for the evaluation of the possibility of the survival of trees under cold temperature conditions in cities.

키워드

참고문헌

  1. Anderson, J.A., Kenna, M.P. and Taliaferro, C.M. 1988. Cold hardiness of 'Midiron' and 'Tifgreen' bermuda grass. Journal of the American Society for Horticultural Science 23(4): 748-750.
  2. Burr, K.E., Tinus, R.W., Wallner, S.J. and King, R.M. 1990. Comparison of three cold hardiness tests for conifer seedlings. Tree Physiology 6(4): 351-369. https://doi.org/10.1093/treephys/6.4.351
  3. Cardona, C.A., Duncan, R.R. and Lindstrom, O. 1997. Low temperature tolerance assessment in Paspalum. Crop Science Society of America 37(4): 1283-11291. https://doi.org/10.2135/cropsci1997.0011183X003700040043x
  4. Diaz-Varela, R.A., Colombo, R., Meroni, M., Calvo-Iglesias, M.S., Buffoni, A. and Tagliaferri, A. 2010. Spatio-temporal analysis of alpine ecotones: A spatial explicit model targeting altitudinal vegetation shifts. Ecological Modelling. 221(4): 621-633. https://doi.org/10.1016/j.ecolmodel.2009.11.010
  5. Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N.E., Guisan, A. and Mang, T. 2012. Extinction debt of high-mountain plants under twenty-first-century climate change, Nature Climate Change 2(8): 619-622. https://doi.org/10.1038/nclimate1514
  6. Dunn, J.H., Bughrara, S.S., Warmund, M.R. and Fresenbug, B.F. 1999. Low temperature tolerance of zoysia grasses. Journal of the American Society for Horticultural Science 34(1): 96-99.
  7. Fry, J.D., Lang, N.S., Clifton, R.G.P. and Maier, F.P. 1993. Freezing tolerance and carbohydrate content of low temperature acclimated and non-acclimated centipede grass. Crop Science Society of America 33(5): 1051-1055. https://doi.org/10.2135/cropsci1993.0011183X003300050035x
  8. Iles, J.K. and Agnew, N.H. 1995. Seasonal Cold-acclimation patterns of Sedum $spectabile{\times}telephium$ L. 'Autumn Joy' and Sedum spectabile Boreau. 'Brilliant'. Journal of the American Society for Horticultural Science 30(6): 1221-1224.
  9. Ingram, D.L. and Buchanan, D.W. 1981. Measurement of direct heat injury of roots of three woody plants. Journal of the American Society for Horticultural Science 16: 769-771.
  10. Ingram, D.L. and Buchanan, D.W. 1984. Lethal high temperatures for roots of three citrus rootstocks. Journal of the American Society for Horticultural Science. American Society for Horticultural Science 109(2): 189-193.
  11. Ingram, D.L. 1985. Modeling high temperature and exposure time interaction on Pittosporum tobira root cell membrane thermostability. Journal of the American Society for Horticultural Science 110(4): 470-473.
  12. Kim, I. 2006. Development of shallow-extensive green roof system for urban greening. Ph.D Diss. Gyeongsang National Univ Jinju South Korea.
  13. Kim, I.H., Huh, K.Y. and Huh, M.R. 2010. Cold tolerance assessment of Sedum species for shallow-extensive green roof system. Korean Journal of Horticultural Science and Technology 28(1): 22-30.
  14. Kim, I., Huh, K.Y., Jung, H.J., Choi, S.M. and Park, J.H. 2014. Modeling methodology for cold tolerance assessment of Pittosporum tobira. Korean Journal of Horticultural Science and Technology 32(2): 241-251. https://doi.org/10.7235/hort.2014.13033
  15. Kim, I. and Huh, K.Y. 2015. Heat tolerance assessment of Sedums for extensive green roof system. Journal of Korean Society for People, Plants and Environment 18(5): 387-394. https://doi.org/10.11628/ksppe.2015.18.5.387
  16. Kim, J.M., Choi, S.M. and Huh, K.Y. 2016. Comparative Assessment on Cold Rolerance of Broad-leaved Evergreen Tree grown on Southern Region for Urban Greening. Journal of Korean Society for People, Plants and Environment 19(2): 71-78. https://doi.org/10.11628/ksppe.2016.19.2.71
  17. Kingsland, S.E. 1995. Modeling nature. University of Chicago Press, Chicago, IL, USA.
  18. Koo, K.A., Kong, W., Nibbelink, N.P., Hopkinson, C.S. and Lee, J.H. 2015. Potential effects of climate change on the distribution of cold-tolerant evergreen broad leaved woody plants in the korean peninsula. PloS One 10(8): e0134043. https://doi.org/10.1371/journal.pone.0134043
  19. Kozlowski, T.T., Kramer, P.J. and Pallardy, S.G. 1991. The physiological ecology of woody plants. San Diego. Academic Press.
  20. Lee, S.H., Yun, S.G., Back, S.B. and Park. H.G. 1991. Comparison of germination characteristics, and of logistic and eibull functions to predict cumulative germination of grasses under osmotic water stress. Journal of the Korean Society of Grassland and Forage Science 11(4): 209-214.
  21. Maier, F.P., Lang, N.S. and Fry, J.D. 1994. Evaluation of an electrolyte leakage technique to predict St. Augustinegrass freezing tolerance. Journal of the American Society for Horticultural Science 29(4): 316-318.
  22. Martineau, J.R., Specht, J.E., Williams, J.H. and Sullivan, C.Y. 1979. Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Science Society of America 19(1): 75-78. https://doi.org/10.2135/cropsci1979.0011183X001900010017x
  23. McKellar, M.A., Buchanan, D.W., Ingram, D.L. and Campbell, C.W. 1992. Freezing tolerance of avocado leaves. Journal of the American Society for Horticultural Science 27(4): 341-343.
  24. Noh, S.H., Park, S.R., Yang, H.K., Chung, H.C., Chung, I.J., Kim, S.W., Kim, H.H., Choi, J.H., Kim, H.K., Yu, W., Lee, J.I., Shin, D.B., Ji, J., Chen, J.S., Lim, Y., Ha, S. and Bang, Y.J. 2014. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol 15(12): 1389-1396. https://doi.org/10.1016/S1470-2045(14)70473-5
  25. Probsting, E. and Sakai, A. 1979. Determining T50 of peach flower buds with exotherm analysis. Journal of the American Society for Horticultural Science 14: 597-598.
  26. Pukacki, P. and Pukacka, S. 1987. Freezing stress and membrane injury of Norway spruce(Picea abies) tissues, Physiologia Plantarum 69(1): 156-160. https://doi.org/10.1111/j.1399-3054.1987.tb01960.x
  27. Qian, Y.L., Ball, S., Tan, Z., Koski, A.J. and Wilhelm, S.J. 2001. Freezing tolerance of six cultivars of buffalograss. Crop Science Society of America. 41(4): 1174-1178. https://doi.org/10.2135/cropsci2001.4141174x
  28. Ryn, J.H., Lee, H.B., Kim, C.M., Jung, H.H. and Kim, K.S. 2014. Cold Tolerance of Ground Cover Plants for Use as Green Roofs and Walls. Horticultural Science and Technology 32(5): 590-599. https://doi.org/10.7235/hort.2014.14035
  29. Shahikumar, K. and Nus, J.L. 1993. Cultivar and winter cover effects on bermuda grass cold acclimation and crown moisture content. Crop Science Society of America 33(4): 813-817. https://doi.org/10.2135/cropsci1993.0011183X003300040037x
  30. Sharom, M., Willemot, C. and Thompson, J.E. 1994. Chilling injury induces lipid phase changes in membranes of tomato fruit. Physiologia Plantarum 105(1): 305-308. https://doi.org/10.1104/pp.105.1.305
  31. Von Seggern, D. 1993. Standard curves and surfaces: A mathe matica notebook: User's Guids. CRC Press, Boca Raton, FL.