DOI QR코드

DOI QR Code

The Inhibitory Mechanism on Acetylcholine-Induced Contraction of Bladder Smooth Muscle in the Streptozotocin-Induced Diabetic Rat

  • Han, Jong Soo (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University) ;
  • Kim, Su Jin (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University) ;
  • Nam, Yoonjin (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University) ;
  • Lee, Hak Yeong (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University) ;
  • Kim, Geon Min (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University) ;
  • Kim, Dong Min (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University) ;
  • Sohn, Uy Dong (Signaling and Pharmacological Activity Research Lab, College of Pharmacy, Chung-Ang University)
  • Received : 2018.07.23
  • Accepted : 2018.09.20
  • Published : 2019.01.01

Abstract

Most diabetic patients experience diabetic mellitus (DM) urinary bladder dysfunction. A number of studies evaluate bladder smooth muscle contraction in DM. In this study, we evaluated the change of bladder smooth muscle contraction between normal rats and DM rats. Furthermore, we used pharmacological inhibitors to determine the differences in the signaling pathways between normal and DM rats. Rats in the DM group received an intraperitoneal injection of 65 mg/kg streptozotocin and measured blood glucose level after 14 days to confirm DM. Bladder smooth muscle contraction was induced using acetylcholine (ACh, $10^{-4}M$). The materials such as, atropine (a muscarinic receptor antagonist), U73122 (a phospholipase C inhibitor), DPCPX (an adenosine $A_1$ receptor antagonist), udenafil (a PDE5 inhibitor), prazosin (an ${\alpha}_1$-receptor antagonist), papaverine (a smooth muscle relaxant), verapamil (a calcium channel blocker), and chelerythrine (a protein kinase C inhibitor) were pre-treated in bladder smooth muscle. We found that the DM rats had lower bladder smooth muscle contractility than normal rats. When prazosin, udenafil, verapamil, and U73122 were pre-treated, there were significant differences between normal and DM rats. Taken together, it was concluded that the change of intracellular $Ca^{2+}$ release mediated by PLC/IP3 and PDE5 activity were responsible for decreased bladder smooth muscle contractility in DM rats.

Keywords

References

  1. Adela, R., Nethi, S. K., Bagul, P. K., Barui, A. K., Mattapally, S., Kuncha, M., Patra, C. R., Reddy, P. N. and Banerjee, S. K. (2015) Hyperglycaemia enhances nitric oxide production in diabetes: a study from South Indian patients. PLoS ONE 10, e0125270. https://doi.org/10.1371/journal.pone.0125270
  2. Amaral, N. and Okonko, D. O. (2015) Metabolic abnormalities of the heart in type II diabetes. Diab. Vasc. Dis. Res. 12, 239-248. https://doi.org/10.1177/1479164115580936
  3. Andersson, K. E. and Arner, A. (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol. Rev. 84, 935-986. https://doi.org/10.1152/physrev.00038.2003
  4. Artim, D. E., Kullmann, F. A., Daugherty, .S. L., Wu, H. Y. and de Groat, W. C. (2009) Activation of the nitric oxide-cGMP pathway reduces phasic contractions in neonatal rat bladder strips via protein kinase G. Am. J. Physiol. Renal. Physiol. 297, F333-F340. https://doi.org/10.1152/ajprenal.00207.2009
  5. Belis, J. A., Curley, R. M., Wagner, C. H., Murty, V. N., Winter, S. J. and Rohner, T. J., Jr. (1991) Neurogenic function of the diabetic rat bladder: alteration by calcium channel effectors. Pharmacology 43, 273-281. https://doi.org/10.1159/000138855
  6. Bradley, W. E. (1980) Diagnosis of urinary bladder dysfunction in diabetes mellitus. Ann. Intern. Med. 92, 323-326. https://doi.org/10.7326/0003-4819-92-2-323
  7. Braverman, A. S., Tibb, A. S. and Ruggieri, M. R., Sr. (2006) M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. I. Normal rat bladder. J. Pharmacol. Exp. Ther. 316, 869-874. https://doi.org/10.1124/jpet.105.097303
  8. Bucheimer, R. E. and Linden, J. (2004) Purinergic regulation of epithelial transport. J. Physiol. 555, 311-321. https://doi.org/10.1113/jphysiol.2003.056697
  9. Daneshgari, F., Liu, G. and Imrey, P. B. (2006) Time dependent changes in diabetic cystopathy in rats include compensated and decompensated bladder function. J. Urol. 176, 380-386. https://doi.org/10.1016/S0022-5347(06)00582-9
  10. Diederichs, W. (1991) Effects of papaverine on tension and 45Ca-uptake in isolated urinary bladder. Urol. Res. 19, 313-317. https://doi.org/10.1007/BF00299067
  11. Dombkowski, R. A., Doellman, M. M., Head, S. K. and Olson, K. R. (2006) Hydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle. J. Exp. Biol. 209, 3234-3240. https://doi.org/10.1242/jeb.02376
  12. Ferrari, M. (1974) Effects of papaverine on smooth muscle and their mechanisms. Pharmacol. Res. Commun. 6, 97-115. https://doi.org/10.1016/S0031-6989(74)80018-4
  13. Golbidi, S. and Laher, I. (2010) Bladder dysfunction in diabetes mellitus. Front. Pharmacol. 1, 136. https://doi.org/10.3389/fphar.2010.00136
  14. Huddart, H., Langton, P. D. and Saad, K. H. (1984) Inhibition by papaverine of calcium movements and tension in the smooth muscles of rat vas deferens and urinary bladder. J. Physiol. 349, 183-194. https://doi.org/10.1113/jphysiol.1984.sp015151
  15. Iltis, I., Kober, F., Desrois, M., Dalmasso, C., Lan, C., Portha, B., Cozzone, P. J. and Bernard, M. (2005) Defective myocardial blood flow and altered function of the left ventricle in type 2 diabetic rats: a noninvasive in vivo study using perfusion and cine magnetic resonance imaging. Invest. Radiol. 40, 19-26. https://doi.org/10.1097/00004424-200501000-00005
  16. Inoue, R. and Brading, A. F. (1990) The properties of the ATP-induced depolarization and current in single cells isolated from the guineapig urinary bladder. Br. J. Pharmacol. 100, 619-625. https://doi.org/10.1111/j.1476-5381.1990.tb15856.x
  17. Ioanid, C. P., Noica, N. and Pop, T. (1981) Incidence and diagnostic aspects of the bladder disorders in diabetics. Eur. Urol. 7, 211-214. https://doi.org/10.1159/000473221
  18. Johansson, R., Pandita, R. K., Poljakovic, M., Garcia-Pascual, A., De Vente, J. and Persson, K. (2002) Activity and expression of nitric oxide synthase in the hypertrophied rat bladder and the effect of nitric oxide on bladder smooth muscle growth. J. Urol. 168, 2689-2694. https://doi.org/10.1016/S0022-5347(05)64245-0
  19. Kaplan, S. A., Te, A. E. and Blaivas, J. G. (1995) Urodynamic findings in patients with diabetic cystopathy. J. Urol. 153, 342-344. https://doi.org/10.1097/00005392-199502000-00013
  20. Kim, S. J., Park, J. H., Song, D. K., Park, K. S., Lee, J. E., Kim, E. S., Cho, K. B., Jang, B. K., Chung, W. J., Hwang, J. S., Kwon, J. G. and Kim, T. W. (2011) Alterations of colonic contractility in long-term diabetic rat model. J. Neurogastroenterol. Motil. 17, 372-380. https://doi.org/10.5056/jnm.2011.17.4.372
  21. Kudlacz, E. M., Gerald, M. C. and Wallace, L. J. (1989) Effects of diabetes and diuresis on contraction and relaxation mechanisms in rat urinary bladder. Diabetes 38, 278-284. https://doi.org/10.2337/diab.38.3.278
  22. Kullmann, F. A., Downs, T. R., Artim, D. E., Limberg, B. J., Shah, M., Contract, D., de Groat, W. C. and Rosenbaum, J. S. (2011) Urothelial beta-3 adrenergic receptors in the rat bladder. Neurourol. Urodyn. 30, 144-150. https://doi.org/10.1002/nau.20965
  23. Levy, J., Gavin, J. R., 3rd and Sowers, J. R. (1994) Diabetes mellitus: a disease of abnormal cellular calcium metabolism? Am. J. Med. 96, 260-273. https://doi.org/10.1016/0002-9343(94)90152-X
  24. Lohse, M. J., Klotz, K.N., Lindenborn-Fotinos, J., Reddington, M., Schwabe, U. and Olsson, R. A. (1987) 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)--a selective high affinity antagonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch. Pharmacol. 336, 204-210. https://doi.org/10.1007/BF00165806
  25. Longhurst, P. A. and Belis, J. A. (1986) Abnormalities of rat bladder contractility in streptozotocin-induced diabetes mellitus. J. Pharmacol. Exp. Ther. 238, 773-777.
  26. Martinson, E. A., Johnson, R. A. and Wells, J. N. (1987) Potent adenosine receptor antagonists that are selective for the A1 receptor subtype. Mol. Pharmacol. 31, 247-252.
  27. Matsumoto, S., Hanai, T. and Uemura, H. (2010) Chronic treatment with a PDE5 inhibitor increases contractile force of normal bladder in rats. Int. Urol. Nephrol. 42, 53-56. https://doi.org/10.1007/s11255-009-9564-7
  28. Michel, M. C. and Vrydag, W. (2006) Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate. Br. J. Pharmacol. 147, S88-S119. https://doi.org/10.1038/sj.bjp.0706619
  29. Patacchini, R., Santicioli, P., Giuliani, S. and Maggi, C. A. (2004) Hydrogen sulfide (H2S) stimulates capsaicin-sensitive primary afferent neurons in the rat urinary bladder. Br. J. Pharmacol. 142, 31-34. https://doi.org/10.1038/sj.bjp.0705764
  30. Patacchini, R., Santicioli, P., Giuliani, S. and Maggi, C. A. (2005) Pharmacological investigation of hydrogen sulfide (H2S) contractile activity in rat detrusor muscle. Eur. J. Pharmacol. 509, 171-177. https://doi.org/10.1016/j.ejphar.2005.01.005
  31. Pecoits-Filho, R., Abensur, H., Betonico, C. C., Machado, A. D., Parente, E. B., Queiroz, M., Salles, J. E., Titan, S. and Vencio, S. (2016) Interactions between kidney disease and diabetes: dangerous liaisons. Diabetol. Metab. Syndr. 8, 50. https://doi.org/10.1186/s13098-016-0159-z
  32. Poladia, D. P. and Bauer, J. A. (2003) Early cell-specific changes in nitric oxide synthases, reactive nitrogen species formation, and ubiquitinylation during diabetes-related bladder remodeling. Diabetes Metab. Res. Rev. 19, 313-319. https://doi.org/10.1002/dmrr.385
  33. Rizos, C. V., Kei, A. and Elisaf, M. S. (2016) The current role of thiazolidinediones in diabetes management. Arch. Toxicol. 90, 1861-1881. https://doi.org/10.1007/s00204-016-1737-4
  34. Rybalkin, S. D., Yan, C., Bornfeldt, K. E. and Beavo, J. A. (2003) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ. Res. 93, 280-291. https://doi.org/10.1161/01.RES.0000087541.15600.2B
  35. Sam, P. and LaGrange, C. A. (2018) Anatomy, Pelvis, Bladder, Muscles, Detrusor. StatPearls, Treasure Island (FL).
  36. Sand, C. and Michel, M. C. (2014) Bradykinin contracts rat urinary bladder largely independently of phospholipase C. J. Pharmacol. Exp. Ther. 348, 25-31. https://doi.org/10.1124/jpet.113.208025
  37. Schulte, G. and Fredholm, B. B. (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell. Signal. 15, 813-827. https://doi.org/10.1016/S0898-6568(03)00058-5
  38. Somlyo, A. P. and Somlyo, A. V. (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358. https://doi.org/10.1152/physrev.00023.2003
  39. Tong, Y. C., Chin, W. T. and Cheng, J. T. (1999) Alterations in urinary bladder M2-muscarinic receptor protein and mRNA in 2-week streptozotocin-induced diabetic rats. Neurosci. Lett. 277, 173-176. https://doi.org/10.1016/S0304-3940(99)00871-X
  40. Tuttle, K. R., Bakris, G. L., Bilous, R. W., Chiang, J. L., de Boer, I. H., Goldstein-Fuchs, J., Hirsch, I. B., Kalantar-Zadeh, K., Narva, A. S., Navaneethan, S. D., Neumiller, J. J., Patel, U. D., Ratner, R. E., Whaley-Connell, A. T. and Molitch, M. E. (2014) Diabetic kidney disease: a report from an ADA Consensus Conference. Am. J. Kidney Dis. 64, 510-533. https://doi.org/10.1053/j.ajkd.2014.08.001
  41. Van Den Eeden, S. K., Sarma, A. V., Rutledge, B. N., Cleary, P. A., Kusek, J. W., Nyberg, L. M., McVary, K. T. and Wessells, H. (2009) Effect of intensive glycemic control and diabetes complications on lower urinary tract symptoms in men with type 1 diabetes: Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Diabetes Care 32, 664-670. https://doi.org/10.2337/dc07-2375
  42. Vesela, R., Aronsson, P. and Tobin, G. (2011) Functional and morphological examinations of P1A1 purinoceptors in the normal and inflamed urinary bladder of the rat. Auton. Neurosci. 159, 26-31. https://doi.org/10.1016/j.autneu.2010.07.008
  43. Wang, P., Luthin, G. R. and Ruggieri, M. R. (1995) Muscarinic acetylcholine receptor subtypes mediating urinary bladder contractility and coupling to GTP binding proteins. J. Pharmacol. Exp. Ther. 273, 959-966.
  44. Waring, J. V. and Wendt, I. R. (2000) Effects of streptozotocin-induced diabetes mellitus on intracellular calcium and contraction of longitudinal smooth muscle from rat urinary bladder. J. Urol. 163, 323-330. https://doi.org/10.1016/S0022-5347(05)68046-9
  45. Weissman, A. J. (2006) Intensive diabetes treatment and cardiovascular disease. N. Engl. J. Med. 354, 1751-1752; author reply 1751-1752. https://doi.org/10.1056/NEJMc060105
  46. Yu, W., Zacharia, L. C., Jackson, E. K. and Apodaca, G. (2006) Adenosine receptor expression and function in bladder uroepithelium. Am. J. Physiol. Cell Physiol. 291, C254-C265. https://doi.org/10.1152/ajpcell.00025.2006
  47. Zhu, X., Zhai, K., Mi, Y. and Ji, G. (2017) Expression and function of phosphodiesterases (PDEs) in the rat urinary bladder. BMC Urol. 17, 54. https://doi.org/10.1186/s12894-017-0244-0

Cited by

  1. Moringa oleifera leaf and seed inclusive diets influenced the restoration of biochemicals associated with erectile dysfunction in the penile tissue of STZ‐induced diabetic male rats treated wit vol.45, pp.3, 2019, https://doi.org/10.1111/jfbc.13323