DOI QR코드

DOI QR Code

An Experimental Evaluation of AEB Equipped Passenger Vehicle for the Pedestrian Collision Situations

AEB 장착 승용차의 보행자 충돌상황에 관한 실험적 평가에 관한 연구

  • Shim, Jaekwi (Dept. of Traffic Accident Analysis, Korea Road Traffic Authority) ;
  • Lee, Sangsoo (Dept. of Transportation Eng. Ajou University) ;
  • Sun, Chisung (Dept. of Traffic Accident Analysis, Korea Road Traffic Authority) ;
  • Nam, Doohee (School of Social Science, Hansung University)
  • 심재귀 (도로교통공단 사고분석개선처) ;
  • 이상수 (아주대학교 교통시스템공학과) ;
  • 선치성 (도로교통공단 사고분석개선처) ;
  • 남두희 (한성대학교 사회과학부)
  • Received : 2019.11.26
  • Accepted : 2019.12.18
  • Published : 2019.12.31

Abstract

This paper evaluated the performance of passenger vehicles with an AEB(Autonomous Emergency Braking) for various pedestrian-vehicle collision situations. The experiment was conducted at a speed of 30-60km/h on a 2017 3,000cc vehicle using a range of collision scenarios. The results showed that the test vehicle stopped before crashing a pedestrian dummy under all scenarios at 30km/h. The test vehicle reduced the speed but crashed the pedestrian dummy in all scenarios at 40-60km/h. From the paired t-test, there was a speed difference from the AEB system at a significant level of 0.05. In addition, the percentage of speed reduction was quite different for each scenario tested. It was concluded that the current AEB system can prevent pedestrian collisions at speed of 30km/h, but cannot prevent collisions with pedestrians at speed of 40-60 km/h.

본 논문에서는 AEB(Autonomous Emergency Braking)가 장착된 승용차의 차대보행자 충돌상황에 관한 AEB의 기능을 평가하는 실험을 실시하였다. 실차 실험은 2017년식 3,000cc 차량을 대상으로 약 30~60km/h의 속도에서 보행자 정면 및 측면 충돌 시나리오를 설정하여 수행되었다. 실험 결과, AEB가 장착된 차량은 약 30km/h 속도로 주행시 모든 실험조건에서 AEB가 작동하여 보행자 더미를 충돌하기 전에 정지하였다. 그러나 약 40~60km/h의 속도에서는 모든 실험조건에서 실험차량의 AEB 작동으로 속도는 감소되었으나 보행자 더미와는 충돌하였다. 이러한 속도 변화에 대한 paired t-test를 실시한 결과, 유의확률 0.05에서 AEB에 따른 속도차이가 있는 것으로 나타났다. 그리고 AEB의 속도 감소 폭은 차량실험 시나리오별로 큰 차이를 나타내었다. 이러한 결과로부터, 현재의 AEB는 차량 속도가 30km/h에서는 보행자와의 충돌을 예방할 수 있으나, 40~60km/h 속도에서는 차량 감속을 통한 보행자의 상해정도는 경감시킬 수 있으나 보행자와의 충돌을 피할 수 없는 것으로 판단된다.

Keywords

References

  1. America Automobile Association(2019), Advanced Driver Assistance Technology Names, U.S.A.
  2. Choi H. J.(2016), Pedestrian Detection System using Deformable Part Model Considering Human Model, Chung Ang University, pp.36-37.
  3. Goo Y. H.(2016), A Study on State Estimation of Preceding Vehicle and Integrate Steering/Braking Control for Securing the Reliability of AEB, Kookmin University, pp.70-71.
  4. Jeon S. D.(2016), A Study on Analysis of Autonomous Emergency Braking System Considering Road Friction based on Vehicle to Vehicle Communication, University of Ulsan, pp.37-38.
  5. Kia Motors Corporation, http//gsw.kia.co., 2019.01.02.
  6. Lee J. K.(2013), A Study on the Integrated Control between and CDC for Improving performance of Longitudinal Collision Avoidance, Kookmin University, p.76.
  7. Pyun B. J.(2015), A Study on the Autonomous Emergency Braking System Considering Driving Condition, Hanyang University.
  8. Ryu J. J.(2013), Research of Tracking Algorithm for Autonomous Emergency Braking System based on Automotive Radar, Kookmin University.
  9. Shim J. K. and Lee S. S.(2017), "Analysis of Pedestrian Throw Distance from Truck Speed and Bumper Height," Journal of The Korea Institute of Intelligent Transportation Systems, vol. 16, no. 5, pp.85-95. https://doi.org/10.12815/kits.2017.16.5.85