DOI QR코드

DOI QR Code

Study on the Surface Properties of Corneocyte between Face and Forearm Using Atomic Force microscopy (AFM)

AFM을 이용한 얼굴과 하박내측 각질세포 표면 특성 비교연구

  • Chang, Minyoul (Department of Bio-Cosmetic Science, Seowon University)
  • 장민열 (서원대학교 바이오코스메틱학과)
  • Received : 2019.11.18
  • Accepted : 2019.12.20
  • Published : 2019.12.30

Abstract

There are many differences in tran-epidermal water loss (TEWL), skin water contents, and skin elasticity, etc between face and forearm skin. In particular, our previous studies showed that elasticity of face skin was significantly differed from forearm depending on full hydration. So, we have studied the surface properties of corneocyte using atomic force microscopy (AFM), assuming that the differences between face and forearm skin would be associated with the surface properties of corneocyte. The surface roughness of corneocyte and villus-like projections (VPs) were measured. Furthermore, qualitative comparison among the surface of face, forearm, and lip corneocyte was performed. Corneocytes were collected by tape-stripping on both face and forearm of 8 volunteers, and the bottom surface of corneocytes were measured at 40 ㎛ × 40 ㎛ using AFM. Results showed that the lower surface roughness of face corneocytes was 388.34 ± 86.189 nm, and that of forearm corneocytes was 662.27 ± 224.257 nm, which confirmed that the lower surface of forearm corneocytes was more rough than that of face corneocytes (p < 0.001). Compared with the amount of VPs, lip corneocytes were the highest followed by face corneocytes, and forearm corneocytes were the lowest. From these results, it is conclued that the surface properties of corneocytes are somewhat involved in the property differences between the face and the forearm skin and VPs can be a useful parameter for the study of corneocyte by site. In addition, AFM is a very useful device for the comparative study of nano-structural differences on the surface of corneocytes. More studies can lead to develop a new evaluation method of corneocytes.

얼굴과 하박내측의 피부는 경피수분손실량(TEWL), 피부 수분량, 탄력 등에서 많은 차이를 보이고 있다. 특히, 이전 연구 결과에서 얼굴피부와 하박내측 피부는 수화(hydrating) 과정에 따른 탄력특성의 차이를 보여 주었다. 이에 본 연구에서는 신체부위에 따른 피부특성 차이는 각 신체부위를 구성하고 있는 각질세포 특성과 연관성이 있을 것이라는 가정하에 atomic force microscopy (AFM)을 이용하여 각질세포 표면 특성을 비교 연구하였다. 각질세포 표면의 거칠기(roughness)와 villus-like projections (VPs)을 이용하여 비교 평가 하였다. 더 나아가 얼굴피부, 하박내측, 입술 피부의 각질세포 표면을 정성적으로 비교해 보았다. 각질세포는 8명의 피험자의 얼굴과 하박내측 피부에서 tape-stripping을 이용하여 채취하여, AFM을 이용하여 40 ㎛ × 40 ㎛ 크기로 각질세포의 아랫면 표면 특성(bottom surface of corneocyte)을 측정하였다. 그 결과, 얼굴 각질세포 아랫면 표면 거칠기는 388.34 ± 86.189 nm이었고, 하박내측 각질세포 아랫면 표면 거칠기는 662.27 ± 224.257 nm로 하박내측 각질세포가 얼굴 각질세포보다 더 거친 표면 특성임을 확인하였다(p < 0.001). 관찰된 VPs의 양을 비교해보면, 입술 각질세포가 가장 많았고, 그 다음이 얼굴 각질세포이며, 하박내측 각질세포는 낮은 수준이었다. 이러한 결과를 통해 볼때, 각질세포 표면 특성이 얼굴과 하박내측 피부 사이에 보이는 특성 차이에 어느 정도 관여하고 있음을 확인할 수 있었으며, VPs는 부위별 피부 특성 연구에 유용한 parameter가 될 수 있는 가능성도 확인할 수 있었다. 그리고, AFM은 각질세포 표면의 미세한 구조적 차이를 비교 연구하는데 매우 유용한 기기임을 알 수 있었다. 향후 조금 더 많은 연구가 진행된다면 각질세포에 대한 새로운 화장품 효능 평가법이 개발될 것으로 사료된다.

Keywords

References

  1. A. Boehling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy, Skin Res Technol, 20(1), 50 (2014). https://doi.org/10.1111/srt.12082
  2. H. S. Ryu, Y. H. Joo, S. O. Kim, K. C. Park, and S. W. Youn, Influence of age and regional differences on skin elasticity as measured by the $Cutometer^{(R)}$, Skin Res Technol, 14(3), 354 (2008). https://doi.org/10.1111/j.1600-0846.2008.00302.x
  3. S. Marrakchi, H. I. Baibach, Biophysical parameters of skin: map of human face, regional, and age-related differences, Contact Derm, 57(1), 28 (2007). https://doi.org/10.1111/j.1600-0536.2007.01138.x
  4. H. Tagami, Stratum corneum cell layers. In textbook of aging skin, eds M. A. Farange, K. W. Miller, and H. I. Maibach, Springer, 377 (2010).
  5. M. Y. Chang, Study on skin elasticity property between face and forearm according to the environmental change of stratum corneum, J. Soc. Cosmet. Sci. Korea, 44(4), 455 (2018). https://doi.org/10.15230/SCSK.2018.44.4.455
  6. A.I kai, STM and AFM of bio/organic molecules and structures, Surf. Sci. Rep, 26(8), 263 (1996).
  7. I. Sokolov, M. Firtel, G. S. Henderson, In situ highresolution AFM imaging of biological surfaces, J Vac Sci Technol B, 14(3), 674 (1996).
  8. D. J. Stokes, Recent advantages in electron imaging, image interpretation and applications: environmental scanning electron microscopy, Philos. Trans R Soc. Lond A, 361(1813), 2771 (2003). https://doi.org/10.1098/rsta.2003.1279
  9. R. M. Henderson, H. Oberleithner, Pushing, pulling gragging, and vibrating renal epithelia by using atomic force microscopy, Am. J. Physiol. Renal Physiol., 278(5), 689 (2000).
  10. C. Gorzelanny, T. Goerge, E. M. Schnaeker, K. Thomas, T. A. Luger, and S. W. Schneider, Atomic force microscopy as an innovative tool for nanoanalysis of native stratum corneum, Exp. Dermatol., 15(5), 387 (2006). https://doi.org/10.1111/j.0906-6705.2006.00424.x
  11. R. M. Gaikwad, S. I. Vasilyev, S. Datta, and I. Sokolov, Atomic force microscopy characterization of corneocytes: effect of moisturizer on their topology, rigidity, and friction, Skin Res Technol, 16(3),275 (2010). https://doi.org/10.1111/j.1600-0846.2010.00446.x
  12. O. Naoko, H. Satoshi, M. Fukuyoshi, and H. Mitsuyoshi, Changes in villus-like projections of corneocytes from the facial skin in normal infants with or without infantile eczema; useful parameter to assess barrier function, Skin Res Technol, 19(4), 361 (2013). https://doi.org/10.1111/srt.12044
  13. J. Fredonnet, G. Gasc, G. Serre, C. Severac, and M. Simon, Topographical and nano-mechanical characterization of native corneocytes using atomic force microscopy, J. Dermatol. Sci., 75(1), 63 (2014). https://doi.org/10.1016/j.jdermsci.2014.04.009
  14. C. S. King, S. P. Barton, S. Nicholls, and R. Marks, The change in properties of the stratum corneum as a function of depth, Br. J. Dermatol., 100(2), 165 (1979). https://doi.org/10.1111/j.1365-2133.1979.tb05556.x
  15. Y. Naoe, T. Hata, K. Tanigawa, H. Kimura, and T. Masunaga, Bidimensional analysis of desmoglein 1 distribution on the outermost corneocytes provides the structural and functional information of the stratum corneum, J. Dermatol. Sci., 57(3), 192 (2010). https://doi.org/10.1016/j.jdermsci.2009.12.014
  16. J. Franz, M. Beutel, K. Gevers, A. Kramer, J. P. Thyssen, S. Kezic, and C. Riethmuller, Nanoscale alterations of corneocytes indicate skin disease, Skin Res Technol, 22(2), 174 (2016). https://doi.org/10.1111/srt.12247
  17. C. Riethmuller, Assessing the skin barrier via corneocyte morphometry, Exp. Dermatol., 27(8), 923 (2018). https://doi.org/10.1111/exd.13741
  18. M. Gorcea, M. E. Lane, D. J. Moore, A proof of principle study comparing barrier function and cell morphology in face and body skin, Int. J. Cosmet. Sci., 41(6), 613 (2019). https://doi.org/10.1111/ics.12568
  19. S. Michel, R. Schmidt, B. Shroot, and U. Reichert, Morphological and biochemical characterization of the cornified envelopes from human epidermal keratinocytes of different origin, J Invest Dermatol, 91(1), 11 (1988). https://doi.org/10.1111/1523-1747.ep12463281
  20. C. Riethmuller, M. A. McAleer, S. A. Koppes, R. Abdayem, J. Franz, M. Haftek, L. E. Campbell, S. F. MacCallum, W. H. I. McLean, A. D. Irvine, S. Kezic, Filaggrin breakdown products determine corneocyte conformation in patients with atopic dermatitis, J. Allergy Clin. Immunol., 136(6), 1573 (2015). https://doi.org/10.1016/j.jaci.2015.04.042