DOI QR코드

DOI QR Code

A reuse recommendation framework of artifacts based on task similarity to improve R&D performance

연구개발 생산성 향상을 위한 태스크 유사도 기반 산출물 재사용 추천 프레임워크

  • Nam, Seungwoo (Department of Computer Science, Chungbuk National University) ;
  • Daneth, Horn (Department of Computer Science, Chungbuk National University) ;
  • Hong, Jang-Eui (Department of Computer Science, Chungbuk National University)
  • Received : 2018.12.26
  • Accepted : 2019.02.20
  • Published : 2019.02.28

Abstract

Research and development(R&D) activities consist of analytical survey and state-of-the-art report writing for technical information. As R & D activities become more concrete, it often happens that they refer to related technical documents that were created in previous steps or created in previous similar projects. This paper proposes a research-task based reuse recommendation framework(RTRF), which is a reuse recommendation system that enables researchers to efficiently reuse the existing artifacts. In addition to the existing keyword-based retrieval and reuse, the proposed framework also provides reusable information that researchers may need by recommending reusable artifacts based on task similarity; other developers who have a similar task to the researcher's work can recommend reusable documents. A case study was performed to show the researchers' efficiency in the process of writing the technology trend report by reusing existing documents. When reuse is performed using RTRF, it can be seen that documents of different stages or other research fields are reused more frequently than when RTRF is not used. The RTRF may contribute to the efficient reuse of the desired artifacts among huge amount of R&D documents stored in the repository.

연구 개발 활동은 다양한 기술 정보의 조사 분석 및 기술 보고서 작성 활동들로 구성된다. 연구 개발 활동이 구체화되면서 이전 단계에 작성된, 또는 이전의 유사 프로젝트에서 작성된 관련 기술 문서를 참조하는 일이 많이 발생한다. 본 논문에서는 연구자가 원하는 이전 산출물의 효율적인 재사용을 가능하게 하는 재사용 추천 프레임워크인 RTRF(research task based reuse recommendation framework)를 제안한다. 제안하는 프레임워크는 기존의 유사어 기반 검색 및 재사용에 추가하여 태스크 유사도를 기반으로, 개발자의 연구와 비슷한 흐름을 가지고 있는 다른 개발자가 재사용한 문서를 추천해주어 개발자에게 필요할 수 있는 정보를 제공한다. 사례연구는 연구자들이 기존 문서를 재사용하여 기술동향보고서를 작성하는 과정에서의 효율성을 보이기 위해 수행하였다. RTRF를 이용하여 재사용을 수행하는 경우, RTRF를 이용하지 않는 경우와 비교했을 때 다른 단계의 문서 및 다른 연구분야의 문서를 더 빈번하게 재사용하는 것을 알 수 있었다. 본 논문에서 제안하는 RTRF는 개발자가 저장소에 저장되어 있는 방대한 양의 R&D 문서들 중에서 원하는 문서를 효율적으로 재사용하는 것에 큰 기여를 한다.

Keywords

JKOHBZ_2019_v9n2_23_f0001.png 이미지

Fig. 1. Logical connections between mCs to provide traceability[15]

JKOHBZ_2019_v9n2_23_f0002.png 이미지

Fig. 2. Conceptual structure of the research task based reuse recommendation framework(RTRF)

JKOHBZ_2019_v9n2_23_f0003.png 이미지

Fig. 3. RTRF User Interface

JKOHBZ_2019_v9n2_23_f0004.png 이미지

Fig. 4. The generated RTs and mCs with Gephi

Table 1. A list of documents used for case study

JKOHBZ_2019_v9n2_23_t0001.png 이미지

Table 1. continued

JKOHBZ_2019_v9n2_23_t0002.png 이미지

Table 2. Documents info. used by each member

JKOHBZ_2019_v9n2_23_t0003.png 이미지

Table 3. Estimation results from the case study

JKOHBZ_2019_v9n2_23_t0004.png 이미지

References

  1. Wikipedia contributors. (2018). Reuse. Wikipedia. https://en.wikipedia.org/w/index.php?title=Reuse&oldid=8 73286698
  2. D. K. Kim, E. Song, J. Ryoo & Y. R. Reddy. (2017). Special issue on software reuse. Software Practice and Experience, 47(7), 941-942. https://doi.org/10.1002/spe.2504
  3. J. S. Park, J. J. Kown, J. E. Hong & M. C. (2013). Software Architecture Recovery for Android Application Reuse. Journal of Convergence for Information Technology, 3(2), 9-17. https://doi.org/10.22156/CS4SMB.2013.3.2.009
  4. Y. Choi & J. E. Hong. (2017). Designing Software Architecture for Reusing Open Source Software. Journal of Convergence for Information Technology, 7(2), 67-76. https://doi.org/10.22156/CS4SMB.2017.7.2.067
  5. J. H. Kim. (2014). Support of Reuse in Backlog Refinement with Backlog Factoring. Journal of Digital Convergence, 12(12), 337-343. https://doi.org/10.14400/JDC.2014.12.12.337
  6. Amarmend, E. C. Lee, J. W. Lee & B. Lee. (2016). Describing Activities to Verify Artifacts(Documents and Program) in Software R&D. Journal of Internet Computing and Services(JICS), 17(2), 39-47. https://doi.org/10.7472/jksii.2016.17.2.39
  7. J. P. Kim, D. H. Kim & J. E. Hong. (2011). Techniques to Support Low-Power Characteristics in Embedded Software Development Process. Journal of Convergence for Information Technology, 1(1), 55-65.
  8. S. K. Kim & J. E. Hong. (2016). Application of Safety Analysis and Management in Software Development Process. Journal of Convergence for Information Technology, 6(1), 7-15. https://doi.org/10.22156/CS4SMB.2016.6.1.007
  9. S. Kim, at el., (2012). Toward Offline Contents Based Software R&D Support System. Advances in Computer Science and Ubiquitous Computing, 1097-1101.
  10. D. Kim & J. E. Hong. (2018). Improving software artifacts reusability based on context-aware reuse technique. Journal of Theoretical and Applied Information Technology, 96(2), 523-533.
  11. S. Hwang, K. Seo, W. Ryu & Y. Nam. (2017). System for the Researcher Map to Promote Convergence Research. Advances in Computer Science and Ubiquitous, 1168-1173.
  12. S. Hwang, Y. Lee & Y. Nam. (2018). System for extracting domain topic using link analysis and searching for relevant features. Journal of Ambient Intelligence and Humanized Computing, 1-13.
  13. D. Kim, S. K. Kim, W. Jung & J. E. Hong. (2016). A Context-Aware Architecture Pattern to Enhance the Flexibility of Software Artifacts Reuse. Advances in Computer Science and Ubiquitous Computing, 654-659.
  14. D. Kim & J. E. Hong. (2018). The microComponent and Its Extension Patterns for Flexible Reuse of Software Artifacts. Advances in Computer Science and Ubiquitous, 1084-1090.
  15. D. Kim, S. Nam & J. E. Hong. (2018). A dynamic control technique to enhance the flexibility of software artifact reuse in large-scale repository. The Journal of Supercomputing, 1-31.
  16. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer & R. Harshman. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
  17. D. Shin. (2000). A Study on Content-Based Information Retrieval System using LSA. Master dissertation. Seoul National University, Seoul.
  18. P. N. Tan. (2006). Introduction to Data Mining. Boston: Pearson Addison-Wesley.
  19. S. Niwattanakul, J. Singthongchai, E. Naenudorn & S. Wanapu. (2013). Using of Jaccard Coefficient for Keywords Similarity. Proceedings of the International MultiConference of Engineers and Computer Scientist 2013, 1-5.
  20. M. Kersten, Mik, G. Murphy & G. C. (2006). Using task context to improve programmer productivity. Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 1-11.
  21. W. Maalej, M. Ellmann & R. Robbes. (2017). Using contexts similarity to predict relationships between tasks. The Journal of Systems and Software, 128, 267-284. https://doi.org/10.1016/j.jss.2016.11.033
  22. Wikipedia contributors. (2018, December 2). J accard index. In Wikipedia, The Free Encyclopedia. Retrieved 12:39, January 6, 2019, from https://en.wikipedia.org/w/index.php?title=Jaccard_index &oldid=871576429
  23. C. E. Lee, Y. Yun & J. E. Hong. (2018). Simulation-based Testing of Automonous Driving Software Using OpenDS. Proceedings Convergence Society for SMB, 25(2), 541-543.
  24. Wikipedia contributors. (2018). Gephi. Wikipedia. https://en.wikipedia.org/w/index.php?title=Gephi&oldid=875139913