DOI QR코드

DOI QR Code

거세한우 비육후기 보리곡실 발효사료 급여에 따른 성장과 도체특성에 미치는 효과

Effects of Growth Performance and Carcass Characteristics by Fermented Barley Grain Feeding in Post-fattening Hanwoo Steers

  • 장선식 (국립축산과학원 한우연구소) ;
  • 권응기 (국립축산과학원 한우연구소) ;
  • 이은미 (국립축산과학원 한우연구소) ;
  • 황소미 (국립축산과학원 한우연구소) ;
  • 조상래 (국립축산과학원 한우연구소) ;
  • 김의형 (국립축산과학원 한우연구소) ;
  • 정기용 (한국농수산대학교)
  • Chang, Sun-Sik (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Kwon, Eun-Ki (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Lee, Eun-Mi (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Hwang, So-Mi (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Cho, Sang-Rae (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Kim, Ui-Hyoung (Hanwoo Research Institute, National Institute of Animal Science) ;
  • Chung, Ki Yong (Korea National College of Agriculture and Fisheries)
  • 투고 : 2019.11.21
  • 심사 : 2019.11.29
  • 발행 : 2019.12.31

초록

본 연구는 사료용 보리의 이용성을 향상시키기 위해 등숙 전 보리를 수확과 동시에 발효 처리한 보리곡실 발효사료를 비육후기 거세한우 적정 급여수준 및 기간을 구명하기 위하여 실시하였다. 본 연구는 보리곡실 발효사료의 적정 급여량을 구명하기 위하여 22개월령 비육후기 한우 거세우 32두(603.4±42.7kg)를 4개 처리구 당 8두씩 공시하여 약 9개월간 사육하였고(시험1), 적정 급여 기간을 구명하기 위하여 22개월령 비육후기 48두(625.8±13.1kg)를 4개 처리구 당 12두씩 이용하여 30개월령까지 약 9개월 동안 사육하였다(시험2). (시험1)은 비육후기 배합사료 급여량 10kg를 급여하는 대조구(Control) 배합사료 급여량의 10%를 보리곡실 발효사료로 대체 급여하는 처리구(TRT 1), 20%를 급여하는 처리구(TRT 2), 30%를 급여하는 처리구(TRT 3)등 4개의 처리구를 두었고, 각 처리구의 배합사료와 보리곡실 발효사료 급여량은 각각 9, 2.1kg, 8, 4.2kg, 7 및 7, 6.3kg을 급여하였고 조사료로 볏짚을 1.5 kg 급여하였다. (시험2)는 (시험1)의 결과 10%대체구가 적절한 것으로 판단되어 적정급여기간을 구명하기 위해 비육후기 배합사료 9kg를 급여하는 대조구(Control), 보리곡실 발효사료를 배합사료의 10% 대체급여기간을 출하전 3개월(TRT 1), 6개월(TRT 2), 9개월(TRT32)등 4개의 처리구를 두었고, 각 처리구는 공통적으로 배합사료와 보리곡실 발효사료 각각 8, 2.1kg, 조사료로 볏짚을 1.5 kg를 급여하였다. 처리구별 일당 증체량은 TRT 1이 높았으며, TRT3은 대조구와 비슷한 수준을 보였다. 종료시 체중과 시험기간 중 일당증체량은 보리곡실 발효사료를 10% 급여한 TRT 1이 비교적 높았다. 근내지방은 TRT 2가 6.13으로 가장 높았고, TRT 3이 6.0으로 TRT 1의 5.63, Control의 5.5에 비해 높았다. 일당 증체량은 TRT 1이 0.76kg으로 가장 높았으며 종료시 체중은 보리곡실 발효사료 10%로 출하 전 3개월 간 급여한 TRT 1이 818.8kg로 비교적 높았다. 도체중은 TRT 1이 491.2kg으로 다른 처리구에 비해 다소 높은 경향이었고, 등심면적은 Control이 98.1㎠ 으로 가장 넓었다. 등지방두께는 TRT 3가 가장 얇았다. 육질등급에서 근내지방은 3개월간 급여한 TRT 1이 6.83으로 가장 높았다. 보리곡실 발효사료를 6개월 이상 급여한 TRT 2, 3의 전단력이 2.8내외로 Control과 TRT1 보다 낮아 대체로 연하게 분석 되었다. 이와 관련하여 관능검사의 연도도 좋은 경향이었다. TRT 1에서 Myristicacid (C14:0)가 유의(P<.0895)하게 높았으며, Linolenicacid(C18:3n3)가 TRT 3구가 역시 유의(P<.0029)하게 높았다.

The purpose of this study was to investigate the proper feeding level and duration of fermented barley grain feed before harvesting to improve the availability of barley for feed. Trial 1 was to investigate the proper feeding amount of fermented barley grain fermented feed, and we prepared 32 heads (603.4 ± 42.7kg) of 22-month-old Hanwoo steer (603.4 ± 42.7kg) for 8 heads in 4 treatment groups. 48 heads (625.8 ± 13.1kg) for Trial 2 were used for 12heads per 4 treatments, and were reared for about 9 months until 30 months of age. Trial 1 is treated a Control group that feed 10㎏ of concentrate, replaces 10% fermented barley grain feed(FBGF) of the control by (TRT 1) and 20% (TRT 2) and 30%(TRT 3). Concentrate and FBGF fed 9, 2.1 kg, 8, 4.2 kg, 7 and 7, 6.3 kg on each treatments respectively and 1.5 kg of rice straw for forage. In Trial 2, 10% of alternative diets were judged to be appropriate, and the control of 9kg of diets and barley grain fermented feeds were used to determine the appropriate feeding period. The treatments were 3 months before shipment (TRT 1), 6 months (TRT 2) and 9 months (TRT32). Each treatment group had 8 and 2.1 kg of concentrate and barley grain fermentation, respectively. As a feed, rice straw was fed to 1.5 kg. The daily gains per treatment were higher in TRT 1 and TRT 3 was similar to the Control. Body weight and daily gain during the test period were higher in TRT 1 fed 10% barley grain fermented feed. TRT 2 was the highest at 6.13, and TRT 3 was 6.0, which was higher than 5.63 of TRT 1 and 5.5 of Control.

키워드

참고문헌

  1. AOAC. 2005. Official methods of analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists.
  2. Chang, S.S., Oh, Y.K., Kim, K.H., Hong, S.K. Kwon, E.G. Cho, Y.M., Cho, W.M., Eun, J.S., Lee, S.C., Choi, S.H. and Song, M.K. 2007. Effect of dietary barley on the growth performance and carcass characteristics in Hanwoo steers. J. Anim. Sci. & Technol. 49:801-818. https://doi.org/10.5187/JAST.2007.49.6.801
  3. Duckett, S.K., Wagner, D.G., Yates, L.D., Dolezal, H.G. and May, S.G. 1993. Effect of time on feed on beef nutrient composition. J. Anim. Sci. 71:2079. https://doi.org/10.2527/1993.7182079x
  4. Folch, J., Lees, M. and Sloane Stanley, G.H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry. 226:497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
  5. Gregory, K.E., Cundiff, L.V. and Koch, R.M. 1995. Genetic and phenotypic (Co)variances for growth and carcass traits of purebred and composit populations of beef cattle. J. Anim. Sci. 73:1970.
  6. Hojberg, O., Canibe, N., Knudsen, B. and Jensen, B. B. 2003. potential rates of fermentation in digesta from the gastrointestinal tract of pigs: Effect of feeding fermented liquid feed. Appl. Environ.l Microbiol. 69:408-418. https://doi.org/10.1128/AEM.69.1.408-418.2003
  7. Konishi, K., Nade, T., Maeda, M. and Uchiyama, M. 1995. Determination of fat content in beef loin by image analysis system. Anim. Sci. Technol. (Jpn.) 66:548-554.
  8. Leat, W.M.F. 1978. Factors affecting the fatty acid composition of depot fats of cattle and other ruminants. J. Agric. (Camb.) 85:551.
  9. Lunt, D.K. and Smith, S.B. 1991. 8. Wagyu beefs holds profit potential for U.S. feedlot. Feedstuffs. 19:18.
  10. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2017. Grade rule for cattle carcass in Korea. Korea Ministry of Government Legislation.
  11. Orskov, E.R. 1986. starch digestion and utilization in ruminants. J. Anim. Sci. 63:1624. https://doi.org/10.2527/jas1986.6351624x
  12. Park B.S. and Yoo, I.J. 1994. Comparison of fatty acid composition among imported beef, holstein steer beef and Hanwoo beef. J. Anim. Sci. & Technol. (Kor.) 36:69-75.
  13. Plumed-Ferrer, C., Kivelä, I., Hyvonen, P. and von Wright, A. 2005. Survival, growth and persistence under farm conditions of a Lactobacillus plantarum strain inoculated into liquid pig feed. J. Appl. Microbiol. 99:851-858. https://doi.org/10.1111/j.1365-2672.2005.02666.x
  14. Reiser, R. and Shorland, F.B. 1990. In Meat and Health-Advance in Meat Research, vol. 6, eds. A.M. Pearson and T.R. Dustom. Elsevier Applied Science, London.
  15. Smith, S.B. and Crouse, J.D. 1984. Relative contributions of acetate, lactate and glucose to lipogenesis in bovine intramuscular and subcutaneous adipose tissue. J. Nutr. 114:792. https://doi.org/10.1093/jn/114.4.792
  16. Van Soest, P.J., Robertson, J.B. and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  17. Van Winsen, R.L., Urlings, B.A.P, Lipman, L.J.A., Snijders, J.M.A., Keuzenkamp, D., Verheijden, J.H.M. and van Knapen, F. 2001. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl. Environ. Microbiol. 67:3071-3076. https://doi.org/10.1128/AEM.67.7.3071-3076.2001