DOI QR코드

DOI QR Code

Changes in Provenance and Transport Process of Fine Sediments in Central South Sea Mud

남해중앙니질대 세립질 퇴적물의 기원지 및 이동과정 변화

  • Lee, Hong Geum (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Park, Won Young (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Koo, Hyo Jin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Choi, Jae Yeong (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Jang, Jeong Kyu (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 이홍금 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 박원영 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 구효진 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 최재영 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 장정규 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소)
  • Received : 2019.11.20
  • Accepted : 2019.12.11
  • Published : 2019.12.30

Abstract

The Central South Sea Mud (CSSM), developed in the Seomjin River estuary, is known to be supplied with sediments from Heuksan Mud Belt (HMB) and Seomjin River. However, in order to form a mud belt, more sediments must be supplied than supplied in the above areas. Therefore, research on additional sources should be conducted. In this study, clay minerals, major elements analyzes were performed on cores 16PCT-GC01 and 16PCT-GC03 in order to investigate the transition in the provenance and transport pathway of sediments in CSSM. The Huanghe sediments are characterized by higher smectite and the Changjiang sediments are characterized by higher illite. Korean river sediments contain more kaolinite and chlorite than those of chinese rivers. Korean river sediments have higher Al, Fe, K concentraion than Chinese river sediments and Chinese rivers have higher Ca, Mg, Na than those of Korean rivers. Therefore, clay minerals and major elements can be a useful indicator for provenance. Based on our results, CSSM can be divided into three sediment units. Unit 3, which corresponds to the lowstand stage, is interpreted that sediments from Huanghe were supplied to the study area by coastal or tidal currents. Unit 2, which corresponds to the transgressive stage, is interpreted to have a weaker Huanghe effect and a stronger Changjiang and Korean rivers effect. Unit 1, which corresponds to the highstand stage when the sea level is the same as present and current circulation system is formed, is interpreted that sediments from Changjiang and Korean rivers are supplied to the research area through the current.

남해 섬진강 하구유역에 발달되어 있는 남해중앙니질대는 흑산머드벨트의 퇴적물들과 섬진강의 퇴적물들을 공급받는 것으로 알려져 있다. 그러나 니질 퇴적체를 형성하기 위해서는 위 지역에서 공급되는 퇴적물보다 더 많은 양의 퇴적물이 공급되어야하기 때문에, 추가적인 퇴적물 공급원에 대한 연구가 필요하다. 본 연구에서는 남해중앙니질대 퇴적물의 기원지 및 퇴적물 유입경로의 변화를 알아보기 위해, 16PCT-GC01 및 16PCT-GC03 코어에 대해 점토광물 및 주성분원소 분석을 수행하였다. 황하 퇴적물은 스멕타이트의 함량이 높고, 양쯔강 퇴적물은 일라이트의 함량이 높으며, 한국 강 퇴적물들은 카올리나이트와 녹니석의 함량이 높다. 또한 한국 강 퇴적물은 Al, Fe, K가 풍부하고, 중국 강 퇴적물은 Ca, Mg, Na 등이 풍부하다. 따라서 점토광물과 주성분원소를 이용해 퇴적물의 기원지를 추적할 수 있다. 연구 결과, 남해중앙니질대의 코어 퇴적층은 총 3개의 퇴적 단위(sediment unit)로 구분할 수 있다. 해수면이 가장 낮은 저수위기(lowstand stage)에 해당되는 퇴적 단위 3은 황하로부터 공급된 퇴적물이 연안류 혹은 조석 작용에 의해 연구지역으로 공급된 것으로 해석되고, 해수면이 빠르게 상승하는 해침기(transgressive stage)에 해당되는 퇴적 단위 2는 황하의 영향이 약해지고 양쯔강과 한국 강들의 영향이 강해지는 것으로 해석된다. 현재와 같은 해수면과 해류의 순환이 형성된 고수위기(highstand stage)에 해당되는 퇴적 단위 1은 양쯔강과 한국 강으로부터 퇴적물이 해류를 통해 연구지역으로 공급된 것으로 해석된다.

Keywords

References

  1. Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America, Bullentin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  2. Berne, S., Vagner, P., Guichard, F., Lericolais, G., Liu, Z., Trentesaus, A., Yin, P., and Yi, H.I. (2002) Pleistocene forced regressions and tidal sand ridges. Marine Geology, 188, 293-315. https://doi.org/10.1016/S0025-3227(02)00446-2
  3. Bae, S.H., Kim, D.C., Lee, G.S., Kim, G.Y., Kim, S.P., Seo, Y.K., and Kim, J.C. (2014) Physical and acoustic properties of inner shelf sediments in the South Sea, Korea. Quaternary International, 344, 125-142. https://doi.org/10.1016/j.quaint.2014.03.058
  4. Cho, Y.G., Lee, C.B., and Choi, M.S. (1999) Geochemistry of surface sediments and sedimentary rocks. Marine Geology, 159, 111-129. https://doi.org/10.1016/S0025-3227(98)00194-7
  5. Cho, H.G., Kim. S.O., Kwak, K.Y., Choi, H., and Khim, B.K. (2015) Clay mineral distribution and provenance in the Heuksan mud belt, Yellow Sea. Geo-Marine Letters, 35, 411-419. https://doi.org/10.1007/s00367-015-0417-3
  6. Choi, J.Y., Lim, D.I., Park, C.H., Kim, S.Y., Kang, S.Y., Kang, S., and Jung H.S. (2010) Characteristics of clay mineral compositions in river sediments around the Yellow Sea and its application to the provenance of the continental shelf mud deposit. Journal of the Geology Society of Korea, 46, 497-509 (in Korean with English abstract).
  7. Ha, H.J., Chun, S.S., and Chang T.S. (2013) Distribution pattern, geochemical composition and provenance of the Huksan Mud Belt sediment in the Southeastern Yellow Sea. Journal of the Korean Earth Science Society, 34, 289-302 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2013.34.4.289
  8. KIGAM (Korea Institute of Geoscience and Mineral Resources) (2016) Study on marine geology and mineral resources in buried paleo-channel of Seomjin River, South Sea. Report of Korea Institute of Geoscience and Mineral Resources, 180p.
  9. Kim, G.Y., Narantsetseg, B., Lee, J.Y., Chang, T.S., Lee, K.S., Yoo, D.G., and Kim, S.P. (2018) Physical and geotechnical properties of drill core sediments in the Heuksan Mud Belt off SW Korea. Quaternary International, 468, 33-48. https://doi.org/10.1016/j.quaint.2017.06.018
  10. Koo, H.J., Lee, Y.J., Kim, S.O., and Cho, H.G. (2018) Clay mineral distribution and provenance in surface sediments of Central Yellow Sea Mud. Geosciences Journal, 22, 989-1000. https://doi.org/10.1007/s12303-018-0019-y
  11. Kwak, K.Y., Choi, H., and Cho, H.G. (2016) Paleo-environmental change during the late Holocene in the southeastern Yellow Sea, Korea. Applied Clay Science, 134, 55-61. https://doi.org/10.1016/j.clay.2016.05.007
  12. Lee, G.S., Kim, D.C., Yoo, D.G., and Yi, H.I. (2013) Sedimentary environment and sequence stratigraphy of late Quaternary deposits in the East China Sea. Marine Georesources and Geotechnology, 31, 17-39. https://doi.org/10.1080/1064119X.2012.661031
  13. Lee, J.H., Yoo, S.J., and Chang, K.I. (1998) Inflow of warm waters into the Yellow Sea observed by coastal zone color scanner. In: Brown BA(ed) Remote Sensing of The Pacific Ocean by Satellites. Southwood Press, Marrickville, 251-254pp.
  14. Li, J., Hu, B., Wei, H., Zhao, J., Zou, L., Bai, F., Dou, Y., Wang, L., and Fang, X. (2014a) Provenance variations in the Holocene deposits from the southern Yellow Sea: Clay mineralogy evidence. Continental Shelf Research, 90, 41-51. https://doi.org/10.1016/j.csr.2014.05.001
  15. Li, G., Li, P., Liu, Y., Qiao, L., Ma, Y., Xu, J., and Yang, Z. (2014b) Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum. Earth Science Review, 139, 390-405. https://doi.org/10.1016/j.earscirev.2014.09.007
  16. Lim, D.I., Choi, J.Y., Jung, H.S., Rho, K.C., and Ahn, K.S. (2007a) Recent sediment accumulation and origin of shelf mud deposits in the Yellow Sea and East China Seas. Progress in Oceanography, 73, 145-159. https://doi.org/10.1016/j.pocean.2007.02.004
  17. Lim, D.I., Shin, I.-H., and Jung, H.S. (2007b) Major elemental compositions of Korean and Chinese River Sediments: Potential tracers for the discrimination of sediment provenance in the Yellow Sea. Journal of the Korean Earth Science Society, 28, 311-323 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2007.28.3.311
  18. Lim D.I., Xu, Z., Choi, J.Y., Li, T., and Kim, S.Y. (2015) Holocene changes in detrital sediment supply to the eastern part of the central Yellow Sea and their forcing mechanisms. Journal of Asian Earth Sciences, 105, 18-31. https://doi.org/10.1016/j.jseaes.2015.03.032
  19. Park, Y.A. and Khim, B.K. (1990) Clay minerals of the recent fine-grained sediments on the Korean continental shelves. Continental Shelf Research, 10(12), 1179-1191. https://doi.org/10.1016/0278-4343(90)90015-E
  20. Park, S.C., Hong, S.K., and Kim, D.C. (1996) Evolution of late Quaternary deposits on the inner shelf of the South Sea of Korea. Marine Geology, 131, 219-232. https://doi.org/10.1016/0025-3227(96)00006-0
  21. Satio, Y. (1998) Sedimentary environment and budget in the East China Sea. Bulletin on Coastal Oceanography, 36, 43-58 (in Japanese).
  22. Shinn, Y.J., Chough, S.K., Kim, J.W., and Woo, J. (2007) Development of depositional systems in the southeastern Yellow Sea during the postglacial transgression. Marine Geology, 239, 59-82. https://doi.org/10.1016/j.margeo.2006.12.007
  23. Wei, J., Shi, X., Li, G., and Liang, R. (2003) Clay mineral distributions in the southern Yellow Sea and their significance. Chinese Science Bulletin, 48, 7-11. https://doi.org/10.1007/BF02900934
  24. Um, I.K., Choi, M.S., Lee, G.S., and Chang, T.S. (2015) Origin and depositional environment of fine-grained sediments since the last glacial maximum in the southeastern Yellow Sea: Evidence from rare earth elements. Geo-Marine Letters, 35, 421-431. https://doi.org/10.1007/s00367-015-0416-4
  25. Um, I.K., Choi, M.S., Bae, S.H., Song, Y.H., and Kong, G.S. (2018) Provenance of fine-grained sediments in the inner shelf of the Korea Strait(South Sea), Korea. Ocean Science Journal, 53, 31-42. https://doi.org/10.1007/s12601-017-0062-z
  26. Xu, Z.K., Li, T.G., Chang, F.M., Wan, S.M., Choi, J.Y., and Lim, D.I. (2014) Clay-sized sediment provenance change in the northern Okinawa Trough since 22 kyr BP and its paleoenvironmental implication. Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 236-245. https://doi.org/10.1016/j.palaeo.2014.01.016
  27. Yang, S.Y., Jung, H.S., Lim, D.I., and Li, C.X. (2003) A review on the provenance discrimination of sediments in the Yellow Sea. Earth Science Reviews, 63, 93-120. https://doi.org/10.1016/S0012-8252(03)00033-3
  28. Yoo, D.-G. and Park, S.C. (2000) High-resolution seismic study as a tool for sequence stratigraphic evidence of high-frequency sea-level changes: Latest Pleistocene-Holocene example from the Korea Strait. Journal of Sedimentary Research, 70, 210-223. https://doi.org/10.1306/2DC4090B-0E47-11D7-8643000102C1865D
  29. Yoo, D.-G., Koo, N.-H., Lee, H.-Y., Kim, B.-Y., Kim, Y.-J., and Cheong, S. (2015) Acquisition, processing and interpretation of high-resolution seismic data using a small-scale multi-channel system: An example from the Korea strait inner shelf, south-east Korea. Exploration Geophysics, 47, 341-351. https://doi.org/10.1071/eg15081
  30. Yoo, D.-G., Lee, G.-S., Kim, G.-Y., Kang, N.-K., Yi, B.-Y., Kim, Y.-J., Chun, J.-H., and Kong, G.-S. (2016) Seismic stratigraphy and depositional history of late Quaternary deposits in a tide-dominated setting: An example from the eastern Yellow Sea. Marine and Petroleum Geology, 73, 212-227. https://doi.org/10.1016/j.marpetgeo.2016.03.005

Cited by

  1. 강릉-동해 연안 퇴적물의 점토광물에 관한 연구 vol.33, pp.3, 2019, https://doi.org/10.22807/kjmp.2020.33.3.175
  2. Regional classification of total suspended matter in coastal areas of South Korea vol.254, 2019, https://doi.org/10.1016/j.ecss.2021.107339
  3. High-resolution sequence stratigraphy and evolution of the Jeju Strait shelf, Korea, since the Last Glacial Maximum vol.135, 2022, https://doi.org/10.1016/j.marpetgeo.2021.105389