References
- Prefferle, L. D., and Prefferle, W. C., "Catalytically Stabilization Combustion," Catal. Rev. Sci. Eng., 29(2&3), 219-267 (1987). https://doi.org/10.1080/01614948708078071
- Arai, H., Yamada, T., and Eguchi, K., "Catalytic Combustion of Methane over Perovskite-Type Oxides," Appl. Catal., 26, 265-276 (1986). https://doi.org/10.1016/S0166-9834(00)82556-7
- McCarty, J. G., and Wise, H., "Perovskites Catalyst for Methane Combustion", Catal. Today, 8, 231-248 (1990). https://doi.org/10.1016/0920-5861(90)87020-4
- Machida, M., Eughi, K., and Arai, H., "Effect of Additives on the Surface Area of Oxide Supports for Catalytic Combustion," J. Catal., 103, 385-393 (1987). https://doi.org/10.1016/0021-9517(87)90129-1
- Beguin, B., Garbowski, E., and Primet, M., "Stabilization of Alumina by Addition of Lanthanum," Appl. Catal., 75(1), 119-132 (1991). https://doi.org/10.1016/S0166-9834(00)83128-0
- Machida, M., Eguchi, K., and Arai, H., "Effect of Structural Modification on the Catalytic Property of Mn-Substituted Hexaaluminates," J. Catal., 123(2) 477-485 (1990).
- Beguin, B., Garbowski, E., and Primet, M., "Stabilization of Alumina toward Thermal Sintering by Silicon Addition," J. Catal., 127(2), 595-604 (1991). https://doi.org/10.1016/0021-9517(91)90185-7
- Groppi, G., Bellotto, M., Cristiam, C., Forzatti, P., and Villa, P. L., "Preparation and Characterization of Hexaaluminate-Based Materials for Catalytic Combustion," Appl. Catal. A: Gen., 104(2), 101-108 (1993). https://doi.org/10.1016/0926-860X(93)85092-4
- Mao, C. F., and Vannice, M. A., "High Surface Area a-alumina. I.: Adsorption Properties and Heats of Adsorption of Carbon Monoxide, Carbon Dioxide, and Ethylene," Appl. Catal. A: Gen., 111(2), 151-173 (1994). https://doi.org/10.1016/0926-860X(94)85049-6
- Romero, A., Jobbagy, M., Laborde, M., Baronetti, G., and Amadeo, N., "Ni(II)-Mg(II)-Al(III) Catalysts for Hydrogen Production from Ethanol Steam Reforming: Influence of the Mg Content," Appl. Catal. A: Gen., 470(30), 398-404 (2014). https://doi.org/10.1016/j.apcata.2013.10.054
-
Seo, Y. S., Jung, Y. S., Yoon, W. L., Jang, I. J., and Lee, T. W., "The Effect of Ni Content on a Highly Active Ni-
$Al_2O_3$ Catalyst Prepared by the Homogeneous Precipitation Method," Int. J. Hydrogen Energy, 36, 94-102 (2011). https://doi.org/10.1016/j.ijhydene.2010.09.082 -
Roh, H. S., Jung, Y. S., Koo, K. Y., Jung, U. H., Seo. Y. S., and Yoon, W. L., "Steam Reforming of Methane over Highly Active and KOH-resistant
$Ni/{\gamma}-Al_2O_3$ Catalysts for Direct Internal Reforming (DIR) in a Molten Carbonate Fuel Cell (MCFC)," Appl. Catal. A: Gen., 383(1-2), 156-160 (2010). https://doi.org/10.1016/j.apcata.2010.05.037 - Cheng, H., Yue, B., Wang, X., Lu, X., and Ding, W, "Hydrogen Production from Simulated Hot Coke oven Gas by Catalytic Reforming over Ni/Mg(Al)O Catalysts," J. Nat. Gas. Chem., 18(2), 225-231 (2009) https://doi.org/10.1016/S1003-9953(08)60104-8
-
Shishido, T., Yamamoto, Y., Morioka, H., TaKaKi, K., and TaKehira, K., "Active Cu/ZnO and Cu/ZnO/
$Al_2O_3$ Catalysts Prepared by Homogeneous Precipitation Method in Steam Reforming of Methanol," Appl. Catal. A: Gen., 263, 249-253 (2004). https://doi.org/10.1016/j.apcata.2003.12.018 - Maeda, K., Mizukami, F., Watanabe, M., Arai, N., Toba, M., and Shimizu, K., "Synthesis of Thermostable High-Surface-Area Alumina for Catalyst Support," J. Mater. Sci. Lett., 9(5), 522-523 (1990). https://doi.org/10.1007/BF00725864
- Serantoni M., Costa, A. L., Zanelli, C., and Esposito, L., "Crystallization Behaviour of Yb-doped and Undoped YAG Nanoceramics Synthesized by Microwave-Assisted urea Precipitation," Ceram. Int., 40(8), 11837-11844 (2014). https://doi.org/10.1016/j.ceramint.2014.04.018
-
Bernhard, A. M., Peitz, D., Elsener, M., Wokaun, A., and Krocher, O., "Hydrolysis and Thermolysis of Urea and Its Decomposition Byproducts Biuret Cyanuric Acid and Melamine over Anatase
$TiO_2$ ," Appl. Catal. B: Environ., 115, 129-137 (2012). -
Bell T. E., Gonzalez-Carballo J. M., Tooze R. P., and Torrente-Murciano L., "
${\gamma}-Al_2O_3$ nanorods with tuneable dimensions - a mechanistic understanding of their hydrothermal synthesis," RSC. Adv., 7, 22369-22377 (2017). https://doi.org/10.1039/C7RA02590D - Chen B.,, Wang J. X., Wang D., Zeng X. F., Clarke S. M., and Chen J. F., "Synthesis of Transparent Dispersions of Aluminium Hydroxide Nanoparticles," J. Nanotechnol, 29(305605), 1-7 (2018).
- Mishra, D., Anand, S., Panda, R. K., and Das, R. P., "Preparation of Barium Hexa-Aluminate through a Hydrothermal Precipitation-Calcination Route and Characterization of Intermediate and Final Products," Mater. Lett., 56(6), 873-879 (2002). https://doi.org/10.1016/S0167-577X(02)00630-4
- Mishra, D., Anand, S., Panda, R. K., and Das, R. P., "Studies on Characterization, Microstructures and Magnetic Properties of Nano-Size Barium Hexa-Ferrite Prepared through a Hydrothermal Precipitation-Calcination Route," Mater. Chem. Phys., 86(1), 132-136 (2004). https://doi.org/10.1016/j.matchemphys.2004.02.017
- Mohapatra, M., Pattanaik, D. M., Anand, S., and Das, R. P., "Effect of Barium to Aluminium Ratio on Phases Leading to Barium Aluminates," Ceram. Int., 33(4), 531-535 (2007). https://doi.org/10.1016/j.ceramint.2005.10.019
-
Yin, F., Ji, S., Wu, P., Zhao, F., and Li, C., "Preparation, Characterization, and Methane Total Oxidation of
$AAl_{12}O_{19}$ and$AMAl_{11}O_{19}$ Hexaaluminate Catalysts Prepared with Urea Combustion Method," J. Mol. Catal. A: Chem., 294, 27-36 (2008). https://doi.org/10.1016/j.molcata.2008.05.015 - Park, J. Y., Jung, Y. S., and Rhee, Y. W., "Effects of Concentration of Precipitants and Aging Time on Synthesis of Mn-Substituted Barium Hexaaluminates by Homogeneous Precipitation," Korean Chem. Eng. Res., 56(3), 349-355 (2018). https://doi.org/10.9713/KCER.2018.56.3.349