참고문헌
- I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy and H. Ming, "AD-IoT: Anomaly Detection of IoT Cyberattacks in Smart City Using Machine Learning," 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp.305-310, 2019.
- Yu Su, Kaiyue Qi, Chong Di, Yinghua Ma, and Shenghong Li, "Learning Automata based Feature Selection for Network Traffic Intrusion Detection," 2018 IEEE Third International Conference on Data Science in Cyberspace, pp.622-627, 2018.
- Marzieh Bitaab and Sattar Hashemi, "Hybrid Intrusion Detection: Combining Decision Tree and Gaussian Mixture Model," 2017 14th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC), pp.8-12, 2017.
- Saeid Soheily-Khah, Pierre-Francois Marteau and Nicolas Bechet, "Intrusion Detection in Network Systems Through Hybrid Supervised and Unsupervised Machine Learning Process: A Case Study on the ISCX Dataset," International Conference on Data Intelligence and Security, pp.219-226, 2018.
- Xiaoming Ye, Xingshu Chen, Dunhu Liu, Wenxian Wang, Li Yang, Gang Liang and Guolin Shao, "Efficient Feature Extraction using Apache Spark for Network Behavior Anomaly Detection," Tsinghua Science and Technology, Vol.23, No.5, pp.561-573, 2018. https://doi.org/10.26599/TST.2018.9010021
- Ahmad I., Basheri M., Iqbal MJ. and Rahim A., "Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection," IEEE Access, Vol.6, pp.33789-33795, 2018. https://doi.org/10.1109/ACCESS.2018.2841987
- K. Park, Y. Song and Y. Cheong, "Classification of Attack Types for Intrusion Detection Systems Using a Machine Learning Algorithm," Proc. of 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), pp.282-286, 2018.
- INGHAO YAN and GUODONG HAN, "Effective Feature Extraction via Stacked Sparse Autoencoder to Improve Intrusion Detection System," IEEE Access, Vol.6, pp.41238- 41248, 2018. https://doi.org/10.1109/ACCESS.2018.2858277
- Mehdi Mohammadi, Ala Al-Fuqaha, Mohsen Guizani and Jun-Seok Oh, "Semisupervised Deep Reinforcement Learning in Support of IoT and Smart City Services," IEEE Internet of Things Journal, Vol.5, No.2, pp.624-635, 2018. https://doi.org/10.1109/JIOT.2017.2712560
- Monika Roopak, Gui Yun Tian and Jonathon Chambers, "Deep Learning Models for Cyber Security in IoT Networks," 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp.452-457, 2019.
- Imtiaz Ullah and Qusay H. Mahmoud, "A Two-Level Hybrid Model for Anomalous Activity Detection in IoT Networks," 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp.1-6, 2019.
- Machine Learning Repository [Internet], https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet _attacks_N_BaIoT
- Igor Kotenko, Igor Sanko and Alexander Branitskiy, "Framework for Mobile Internet of Things Security Monitoring Based on Big Data Processing and Machine Learning," IEEE ACCESS, Vol.6, pp.72714-72723, 2018. https://doi.org/10.1109/ACCESS.2018.2881998
- H. Chae and S. H. Choi, "Feature Selection for efficient Intrusion Detection using Attribute Ratio," International Journal of Computers and Communications, Vol.8, pp. 134-139, 2014.
- R. Datti and S. Lakhina, "Performance Comparison of Features Reduction Techniques for Intrusion Detection System," International Journal of Computer Science And Technology, Vol.3, No.1, pp.332-335, 2012.
- Al-Qatf MAjjed, Lasheng Yu, Al-Habib Mohammed, and Al-Sabahi Kamal, "Deep Learning Approach Combining Sparse Autoencoder With SVM for Network Intrusion Detection," IEEE Access, Vol.6, pp.52843-52856, 2018. https://doi.org/10.1109/ACCESS.2018.2869577
- Zhaomin Chen, Chai Kiat Yeo, Bu Sung Lee and Chiew Tong Lau, "Autoencoder-based Network Anomaly Detection," 2018 Wireless Telecommunications Symposium (WTS), pp.1-5, 2018.
- S. Squartini, A. Hussain and F. Piazza, "Preprocessing Based Solution for the Vanishing Gradient Problem in Recurrent Neural Networks," Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03. pp.713-716, 2003.
- Tie Luo and Sai G. Nagarajan, "Distributed Anomaly Detection using Autoencoder Neural Networks in WSN for IoT," 2018 IEEE International Conference on Communications (ICC), pp.1-6, 2018
- Imanol Bilbao and Javier Bilbao, "Overfitting Problem and the Over-training in the Era of Data: Particularly for Artificial Neural Networks," 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), pp.173-177, 2017.
- Telmo Amaral, Luis M. Silva, Luis A. Alexandre, Chetak Kandaswamy, Jorge M. Santos and Chetak Kandaswamy, "Using Different Cost Functions to Train Stacked Auto-Encoders," 2013 12th Mexican International Conference on Artificial Intelligence, pp.114-120, 2013.
- J. Zhang and M. Zulkernine, "A Hybrid Network Intrusion Detection Technique using Random Forests," First International Conference on Availability, Reliability and Security (ARES'06), pp.262-269, 2006.
- Marcin Mizianty, Lukasz Kurgan and Marek Ogiela, "Comparative Analysis of the Impact of Discretization on the Classification with Naive Bayes and Semi-Naïve Bayes Classifiers," 2008 Seventh International Conference on Machine Learning and Applications, pp.823-828, 2008.
- Jianxin Wu and Hao Yang, "Linear Regression-Based Efficient SVM Learning for Large-Scale Classification," IEEE Transactions on Neural Networks and Learning Systems, Vol.26, No.10, pp.2357-2369, 2015. https://doi.org/10.1109/TNNLS.2014.2382123
- Iman Sharafaldin, Arash Habibi Lashkari and Ali A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization," 4th International Conference on Information Systems Security and Privacy (ICISSP 2018), pp.108-116, 2018.