참고문헌
- Li S and Wilkinson MF (1998) Nonsense surveillance in lymphocytes? Immunity 8, 135-141 https://doi.org/10.1016/S1074-7613(00)80466-5
- Aoufouchi S, Yelamos J and Milstein C (1996) Nonsense mutations inhibit RNA splicing in a cell-free system: recognition of mutant codon is independent of protein synthesis. Cell 85, 415-422 https://doi.org/10.1016/S0092-8674(00)81119-8
- Buhler M and Muhlemann O (2005) Alternative splicing induced by nonsense mutations in the immunoglobulin mu VDJ exon is independent of truncation of the open reading frame. RNA 11, 139-146 https://doi.org/10.1261/rna.7183805
- Buhler M, Mohn F, Stalder L and Muhlemann O (2005) Transcriptional silencing of nonsense codon-containing immunoglobulin minigenes. Mol Cell 18, 307-317 https://doi.org/10.1016/j.molcel.2005.03.030
- Chemin G, Tinguely A, Sirac C et al (2010) Multiple RNA surveillance mechanisms cooperate to reduce the amount of nonfunctional Ig kappa transcripts. J Immunol Baltim Md 1950 184, 5009-5017
- Lozano F, Maertzdorf B, Pannell R and Milstein C (1994) Low cytoplasmic mRNA levels of immunoglobulin kappa light chain genes containing nonsense codons correlate with inefficient splicing. EMBO J 13, 4617-4622 https://doi.org/10.1002/j.1460-2075.1994.tb06783.x
- Mendell JT, ap Rhys CM and Dietz HC (2002) Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 298, 419-422 https://doi.org/10.1126/science.1074428
- Sperling J and Sperling R (2008) Nuclear surveillance of RNA polymerase II transcripts. RNA Biol 5, 220-224 https://doi.org/10.4161/rna.7162
- Tinguely A, Chemin G, Peron S et al (2012) Cross talk between immunoglobulin heavy-chain transcription and RNA surveillance during B cell development. Mol Cell Biol 32, 107-117 https://doi.org/10.1128/MCB.06138-11
- Wachtel C, Li B, Sperling J and Sperling R (2004) Stop codon-mediated suppression of splicing is a novel nuclear scanning mechanism not affected by elements of protein synthesis and NMD. RNA 10, 1740-1750 https://doi.org/10.1261/rna.7480804
- Wang J, Hamilton JI, Carter MS, Li S and Wilkinson MF (2002) Alternatively spliced TCR mRNA induced by disruption of reading frame. Science 297, 108-110 https://doi.org/10.1126/science.1069757
- Wang J, Chang YF, Hamilton JI and Wilkinson MF (2002) Nonsense-associated altered splicing: a frame-dependent response distinct from nonsense-mediated decay. Mol Cell 10, 951-957 https://doi.org/10.1016/S1097-2765(02)00635-4
- Hwang J and Kim YK (2013) When a ribosome encounters a premature termination codon. BMB Rep 46, 9-16 https://doi.org/10.5483/BMBRep.2013.46.1.002
- Frischmeyer-Guerrerio PA, Montgomery RA, Warren DS et al (2011) Perturbation of thymocyte development in nonsense-mediated decay (NMD)-deficient mice. Proc Natl Acad Sci U S A 108, 10638-10643 https://doi.org/10.1073/pnas.1019352108
- Weischenfeldt J, Damgaard I, Bryder D et al (2008) NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev 22, 1381-1396 https://doi.org/10.1101/gad.468808
- Srour N, Chemin G, Tinguely A et al (2016) A plasma cell differentiation quality control ablates B cell clones with biallelic Ig rearrangements and truncated Ig production. J Exp Med 213, 109-122 https://doi.org/10.1084/jem.20131511
- Jung D, Giallourakis C, Mostoslavsky R and Alt FW (2006) Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 24, 541-570 https://doi.org/10.1146/annurev.immunol.23.021704.115830
- Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S and Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869-877 https://doi.org/10.1016/0092-8674(92)90030-G
- Shinkai Y, Rathbun G, Lam KP et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855-867 https://doi.org/10.1016/0092-8674(92)90029-C
- Alt FW and Baltimore D (1982) Joining of immunoglobulin heavy chain gene segments: implications from a chromosome with evidence of three D-JH fusions. Proc Natl Acad Sci U S A 79, 4118-4122 https://doi.org/10.1073/pnas.79.13.4118
- Roth DB, Chang XB and Wilson JH (1989) Comparison of filler DNA at immune, nonimmune, and oncogenic rearrangements suggests multiple mechanisms of formation. Mol Cell Biol 9, 3049-3057 https://doi.org/10.1128/MCB.9.7.3049
- Desiderio SV, Yancopoulos GD, Paskind M et al (1984) Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells. Nature 311, 752-755 https://doi.org/10.1038/311752a0
- Gilfillan S, Dierich A, Lemeur M, Benoist C and Mathis D (1993) Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science 261, 1175-1178 https://doi.org/10.1126/science.8356452
- Kallenbach S, Doyen N, Fanton d'Andon M and Rougeon F (1992) Three lymphoid-specific factors account for all junctional diversity characteristic of somatic assembly of T-cell receptor and immunoglobulin genes. Proc Natl Acad Sci U S A 89, 2799-2803 https://doi.org/10.1073/pnas.89.7.2799
- Komori T, Okada A, Stewart V and Alt FW (1993) Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261, 1171-1175 https://doi.org/10.1126/science.8356451
- Lafaille JJ, DeCloux A, Bonneville M, Takagaki Y and Tonegawa S (1989) Junctional sequences of T cell receptor gamma delta genes: implications for gamma delta T cell lineages and for a novel intermediate of V-(D)-J joining. Cell 59, 859-870 https://doi.org/10.1016/0092-8674(89)90609-0
- Lewis SM (1994) P nucleotide insertions and the resolution of hairpin DNA structures in mammalian cells. Proc Natl Acad Sci U S A 91, 1332-1336 https://doi.org/10.1073/pnas.91.4.1332
- McCormack WT, Tjoelker LW, Carlson LM et al (1989) Chicken IgL gene rearrangement involves deletion of a circular episome and addition of single nonrandom nucleotides to both coding segments. Cell 56, 785-791 https://doi.org/10.1016/0092-8674(89)90683-1
- Outters P, Jaeger S, Zaarour N and Ferrier P (2015) Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 128, 363-413 https://doi.org/10.1016/bs.ai.2015.08.002
- ten Boekel E, Melchers F and Rolink A (1995) The status of Ig loci rearrangements in single cells from different stages of B cell development. Int Immunol 7, 1013-1019 https://doi.org/10.1093/intimm/7.6.1013
- Ehlich A, Martin V, Muller W and Rajewsky K (1994) Analysis of the B-cell progenitor compartment at the level of single cells. Curr Biol CB 4, 573-583 https://doi.org/10.1016/S0960-9822(00)00129-9
- Mostoslavsky R, Alt FW and Rajewsky K (2004) The lingering enigma of the allelic exclusion mechanism. Cell 118, 539-544 https://doi.org/10.1016/j.cell.2004.08.023
- Gutzeit C, Chen K and Cerutti A (2018) The enigmatic function of IgD: some answers at last. Eur J Immunol 48, 1101-1113 https://doi.org/10.1002/eji.201646547
- Honjo T, Nagaoka H, Shinkura R and Muramatsu M (2005) AID to overcome the limitations of genomic information. Nat Immunol 6, 655-661 https://doi.org/10.1038/ni1218
- Pilzecker B and Jacobs H (2019) Mutating for Good: DNA Damage Responses During Somatic Hypermutation. Front Immunol 10, 438 https://doi.org/10.3389/fimmu.2019.00438
- Goossens T, Klein U and Kuppers R (1998) Frequent occurrence of deletions and duplications during somatic hypermutation: Implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci U S A 95, 2463-2468 https://doi.org/10.1073/pnas.95.5.2463
- Yeap LS, Hwang JK, Du Z et al (2015) Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes. Cell 163, 1124-1137 https://doi.org/10.1016/j.cell.2015.10.042
- Manser T, Tumas-Brundage KM, Casson LP et al (1998) The roles of antibody variable region hypermutation and selection in the development of the memory B-cell compartment. Immunol Rev 162, 183-196 https://doi.org/10.1111/j.1600-065X.1998.tb01441.x
- Delpy L, Sirac C, Le Morvan C and Cogne M (2004) Transcription-dependent somatic hypermutation occurs at similar levels on functional and nonfunctional rearranged IgH alleles. J Immunol Baltim Md 1950 173, 1842-1848
- Allen CD, Okada T and Cyster JG (2007) Germinal-center organization and cellular dynamics. Immunity 27, 190-202 https://doi.org/10.1016/j.immuni.2007.07.009
- Stewart I, Radtke D, Phillips B, McGowan SJ and Bannard O (2018) Germinal Center B Cells Replace Their Antigen Receptors in Dark Zones and Fail Light Zone Entry when Immunoglobulin Gene Mutations are Damaging. Immunity 49, 477-489.e7 https://doi.org/10.1016/j.immuni.2018.08.025
- Victora GD and Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30, 429-457 https://doi.org/10.1146/annurev-immunol-020711-075032
- Manis JP, Tian M and Alt FW (2002) Mechanism and control of class-switch recombination. Trends Immunol 23, 31-39 https://doi.org/10.1016/S1471-4906(01)02111-1
- Nutt SL, Hodgkin PD, Tarlinton DM and Corcoran LM (2015) The generation of antibody-secreting plasma cells. Nat Rev Immunol 15, 160-171 https://doi.org/10.1038/nri3795
- Todd DJ, McHeyzer-Williams LJ, Kowal C et al (2009) XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J Exp Med 206, 2151-2159 https://doi.org/10.1084/jem.20090738
- Takagaki Y, Seipelt RL, Peterson ML and Manley JL (1996) The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87, 941-952 https://doi.org/10.1016/S0092-8674(00)82000-0
- Stalder L and Muhlemann O (2007) Transcriptional silencing of nonsense codon-containing immunoglobulin micro genes requires translation of its mRNA. J Biol Chem 282, 16079-16085 https://doi.org/10.1074/jbc.M610595200
- Ashi MO, Srour N, Lambert JM et al (2018) Physiological and druggable skipping of immunoglobulin variable exons in plasma cells. Cell Mol Immunol 16, 810-819
- Daly J, Licence S, Nanou A, Morgan G and Martensson IL (2007) Transcription of productive and nonproductive VDJ-recombined alleles after IgH allelic exclusion. EMBO J 26, 4273-4282 https://doi.org/10.1038/sj.emboj.7601846
- Delpy L, Sirac C, Magnoux E, Duchez S and Cogne M (2004) RNA surveillance down-regulates expression of nonfunctional kappa alleles and detects premature termination within the last kappa exon. Proc Natl Acad Sci U S A 101, 7375-7380 https://doi.org/10.1073/pnas.0305586101
- Holwerda SJ, van de Werken HJ, Ribeiro de Almeida C et al (2013) Allelic exclusion of the immunoglobulin heavy chain locus is independent of its nuclear localization in mature B cells. Nucleic Acids Res 41, 6905-6916 https://doi.org/10.1093/nar/gkt491
- Eberle AB, Herrmann K, Jack HM and Muhlemann O (2009) Equal transcription rates of productively and nonproductively rearranged immunoglobulin mu heavy chain alleles in a pro-B cell line. RNA 15, 1021-1028 https://doi.org/10.1261/rna.1516409
- Lejeune F (2017) Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Rep 50, 175-185 https://doi.org/10.5483/BMBRep.2017.50.4.015
- Lejeune F and Maquat LE (2005) Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 17, 309-315 https://doi.org/10.1016/j.ceb.2005.03.002
- Muhlemann O, Mock-Casagrande CS, Wang J et al (2001) Precursor RNAs harboring nonsense codons accumulate near the site of transcription. Mol Cell 8, 33-43 https://doi.org/10.1016/S1097-2765(01)00288-X
- Singh AK, Choudhury SR, De S et al (2019) The RNA helicase UPF1 associates with mRNAs co-transcriptionally and is required for the release of mRNAs from gene loci. ELife 8, pii: e41444
- Chang YF, Imam JS and Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76, 51-74 https://doi.org/10.1146/annurev.biochem.76.050106.093909
- Karousis ED and Muhlemann O (2019) Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Cold Spring Harb Perspect Biol 11, pii: a032862
- Baumann B, Potash MJ and Kohler G (1985) Consequences of frameshift mutations at the immunoglobulin heavy chain locus of the mouse. EMBO J 4, 351-359 https://doi.org/10.1002/j.1460-2075.1985.tb03636.x
- Connor A, Wiersma E and Shulman MJ (1994) On the linkage between RNA processing and RNA translatability. J Biol Chem 269, 25178-25184 https://doi.org/10.1016/S0021-9258(17)31514-4
- Jack HM, Berg J and Wabl M (1989) Translation affects immunoglobulin mRNA stability. Eur J Immunol 19, 843-847 https://doi.org/10.1002/eji.1830190510
- Gudikote JP, Imam JS, Garcia RF and Wilkinson MF (2005) RNA splicing promotes translation and RNA surveillance. Nat Struct Mol Biol 12, 801-809 https://doi.org/10.1038/nsmb980
- Eberle AB, Stalder L, Mathys H, Orozco RZ and Muhlemann O (2008) Posttranscriptional Gene Regulation by Spatial Rearrangement of the 3′ Untranslated Region. PLoS Biol 6, e92 https://doi.org/10.1371/journal.pbio.0060092
- Kim YK and Maquat LE (2019) UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA N Y N 25, 407-422 https://doi.org/10.1261/rna.070136.118
- Neu-Yilik G, Raimondeau E, Eliseev B et al (2017) Dual function of UPF3B in early and late translation termination. EMBO J 36, 2968-2986 https://doi.org/10.15252/embj.201797079
- Maquat LE (2002) NASty effects on fibrillin pre-mRNA splicing: another case of ESE does it, but proposals for translation-dependent splice site choice live on. Genes Dev 16, 1743-1753 https://doi.org/10.1101/gad.1014502
- Valentine CR (1998) The association of nonsense codons with exon skipping. Mutat Res 411, 87-117 https://doi.org/10.1016/S1383-5742(98)00010-6
- Nogues G, Kadener S, Cramer P et al (2003) Control of alternative pre-mRNA splicing by RNA Pol II elongation: faster is not always better. IUBMB Life 55, 235-241 https://doi.org/10.1080/1521654031000119830
- Cenci S and Sitia R (2007) Managing and exploiting stress in the antibody factory. FEBS Lett 581, 3652-3657 https://doi.org/10.1016/j.febslet.2007.04.031
- Cogne M and Guglielmi P (1993) Exon skipping without splice site mutation accounting for abnormal immunoglobulin chains in nonsecretory human myeloma. Eur J Immunol 23, 1289-1293 https://doi.org/10.1002/eji.1830230615
- Cogne M, Bakhshi A, Korsmeyer SJ and Guglielmi P (1988) Gene mutations and alternate RNA splicing result in truncated Ig L chains in human gamma H chain disease. J Immunol Baltim Md 1950 141, 1738-1744
- Cogne M, Silvain C, Khamlichi AA and Preud'homme JL (1992) Structurally abnormal immunoglobulins in human immunoproliferative disorders. Blood 79, 2181-2195 https://doi.org/10.1182/blood.V79.9.2181.2181
- Buhler M, Paillusson A and Muhlemann O (2004) Efficient downregulation of immunoglobulin mu mRNA with premature translation-termination codons requires the 5'-half of the VDJ exon. Nucleic Acids Res 32, 3304-3315 https://doi.org/10.1093/nar/gkh651
- Inacio A, Silva AL, Pinto J et al (2004) Nonsense mutations in close proximity to the initiation codon fail to trigger full nonsense-mediated mRNA decay. J Biol Chem 279, 32170-32180 https://doi.org/10.1074/jbc.M405024200
- Peixeiro I, Inacio A, Barbosa C, Silva AL, Liebhaber SA and Romao L (2012) Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations. Nucleic Acids Res 40, 1160-1173 https://doi.org/10.1093/nar/gkr820