DOI QR코드

DOI QR Code

The Yin and Yang of RNA surveillance in B lymphocytes and antibody-secreting plasma cells

  • Lambert, Jean-Marie (UMR CNRS 7276 - INSERM 1268 - Universite de Limoges, Centre de Biologie et de Recherche en Sante) ;
  • Srour, Nivine (UMR CNRS 7276 - INSERM 1268 - Universite de Limoges, Centre de Biologie et de Recherche en Sante) ;
  • Delpy, Laurent (UMR CNRS 7276 - INSERM 1268 - Universite de Limoges, Centre de Biologie et de Recherche en Sante)
  • 투고 : 2019.09.23
  • 발행 : 2019.12.31

초록

The random V(D)J recombination process ensures the diversity of the primary immunoglobulin (Ig) repertoire. In two thirds of cases, imprecise recombination between variable (V), diversity (D), and joining (J) segments induces a frameshift in the open reading frame that leads to the appearance of premature termination codons (PTCs). Thus, many B lineage cells harbour biallelic V(D)J-rearrangements of Ig heavy or light chain genes, with a productively-recombined allele encoding the functional Ig chain and a nonproductive allele potentially encoding truncated Ig polypeptides. Since the pattern of Ig gene expression is mostly biallelic, transcription initiated from nonproductive Ig alleles generates considerable amounts of primary transcripts with out-of-frame V(D)J junctions. How RNA surveillance pathways cooperate to control the noise from nonproductive Ig genes will be discussed in this review, focusing on the benefits of nonsense- mediated mRNA decay (NMD) activation during B-cell development and detrimental effects of nonsense-associated altered splicing (NAS) in terminally differentiated plasma cells.

키워드

참고문헌

  1. Li S and Wilkinson MF (1998) Nonsense surveillance in lymphocytes? Immunity 8, 135-141 https://doi.org/10.1016/S1074-7613(00)80466-5
  2. Aoufouchi S, Yelamos J and Milstein C (1996) Nonsense mutations inhibit RNA splicing in a cell-free system: recognition of mutant codon is independent of protein synthesis. Cell 85, 415-422 https://doi.org/10.1016/S0092-8674(00)81119-8
  3. Buhler M and Muhlemann O (2005) Alternative splicing induced by nonsense mutations in the immunoglobulin mu VDJ exon is independent of truncation of the open reading frame. RNA 11, 139-146 https://doi.org/10.1261/rna.7183805
  4. Buhler M, Mohn F, Stalder L and Muhlemann O (2005) Transcriptional silencing of nonsense codon-containing immunoglobulin minigenes. Mol Cell 18, 307-317 https://doi.org/10.1016/j.molcel.2005.03.030
  5. Chemin G, Tinguely A, Sirac C et al (2010) Multiple RNA surveillance mechanisms cooperate to reduce the amount of nonfunctional Ig kappa transcripts. J Immunol Baltim Md 1950 184, 5009-5017
  6. Lozano F, Maertzdorf B, Pannell R and Milstein C (1994) Low cytoplasmic mRNA levels of immunoglobulin kappa light chain genes containing nonsense codons correlate with inefficient splicing. EMBO J 13, 4617-4622 https://doi.org/10.1002/j.1460-2075.1994.tb06783.x
  7. Mendell JT, ap Rhys CM and Dietz HC (2002) Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 298, 419-422 https://doi.org/10.1126/science.1074428
  8. Sperling J and Sperling R (2008) Nuclear surveillance of RNA polymerase II transcripts. RNA Biol 5, 220-224 https://doi.org/10.4161/rna.7162
  9. Tinguely A, Chemin G, Peron S et al (2012) Cross talk between immunoglobulin heavy-chain transcription and RNA surveillance during B cell development. Mol Cell Biol 32, 107-117 https://doi.org/10.1128/MCB.06138-11
  10. Wachtel C, Li B, Sperling J and Sperling R (2004) Stop codon-mediated suppression of splicing is a novel nuclear scanning mechanism not affected by elements of protein synthesis and NMD. RNA 10, 1740-1750 https://doi.org/10.1261/rna.7480804
  11. Wang J, Hamilton JI, Carter MS, Li S and Wilkinson MF (2002) Alternatively spliced TCR mRNA induced by disruption of reading frame. Science 297, 108-110 https://doi.org/10.1126/science.1069757
  12. Wang J, Chang YF, Hamilton JI and Wilkinson MF (2002) Nonsense-associated altered splicing: a frame-dependent response distinct from nonsense-mediated decay. Mol Cell 10, 951-957 https://doi.org/10.1016/S1097-2765(02)00635-4
  13. Hwang J and Kim YK (2013) When a ribosome encounters a premature termination codon. BMB Rep 46, 9-16 https://doi.org/10.5483/BMBRep.2013.46.1.002
  14. Frischmeyer-Guerrerio PA, Montgomery RA, Warren DS et al (2011) Perturbation of thymocyte development in nonsense-mediated decay (NMD)-deficient mice. Proc Natl Acad Sci U S A 108, 10638-10643 https://doi.org/10.1073/pnas.1019352108
  15. Weischenfeldt J, Damgaard I, Bryder D et al (2008) NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev 22, 1381-1396 https://doi.org/10.1101/gad.468808
  16. Srour N, Chemin G, Tinguely A et al (2016) A plasma cell differentiation quality control ablates B cell clones with biallelic Ig rearrangements and truncated Ig production. J Exp Med 213, 109-122 https://doi.org/10.1084/jem.20131511
  17. Jung D, Giallourakis C, Mostoslavsky R and Alt FW (2006) Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 24, 541-570 https://doi.org/10.1146/annurev.immunol.23.021704.115830
  18. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S and Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869-877 https://doi.org/10.1016/0092-8674(92)90030-G
  19. Shinkai Y, Rathbun G, Lam KP et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855-867 https://doi.org/10.1016/0092-8674(92)90029-C
  20. Alt FW and Baltimore D (1982) Joining of immunoglobulin heavy chain gene segments: implications from a chromosome with evidence of three D-JH fusions. Proc Natl Acad Sci U S A 79, 4118-4122 https://doi.org/10.1073/pnas.79.13.4118
  21. Roth DB, Chang XB and Wilson JH (1989) Comparison of filler DNA at immune, nonimmune, and oncogenic rearrangements suggests multiple mechanisms of formation. Mol Cell Biol 9, 3049-3057 https://doi.org/10.1128/MCB.9.7.3049
  22. Desiderio SV, Yancopoulos GD, Paskind M et al (1984) Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells. Nature 311, 752-755 https://doi.org/10.1038/311752a0
  23. Gilfillan S, Dierich A, Lemeur M, Benoist C and Mathis D (1993) Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science 261, 1175-1178 https://doi.org/10.1126/science.8356452
  24. Kallenbach S, Doyen N, Fanton d'Andon M and Rougeon F (1992) Three lymphoid-specific factors account for all junctional diversity characteristic of somatic assembly of T-cell receptor and immunoglobulin genes. Proc Natl Acad Sci U S A 89, 2799-2803 https://doi.org/10.1073/pnas.89.7.2799
  25. Komori T, Okada A, Stewart V and Alt FW (1993) Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261, 1171-1175 https://doi.org/10.1126/science.8356451
  26. Lafaille JJ, DeCloux A, Bonneville M, Takagaki Y and Tonegawa S (1989) Junctional sequences of T cell receptor gamma delta genes: implications for gamma delta T cell lineages and for a novel intermediate of V-(D)-J joining. Cell 59, 859-870 https://doi.org/10.1016/0092-8674(89)90609-0
  27. Lewis SM (1994) P nucleotide insertions and the resolution of hairpin DNA structures in mammalian cells. Proc Natl Acad Sci U S A 91, 1332-1336 https://doi.org/10.1073/pnas.91.4.1332
  28. McCormack WT, Tjoelker LW, Carlson LM et al (1989) Chicken IgL gene rearrangement involves deletion of a circular episome and addition of single nonrandom nucleotides to both coding segments. Cell 56, 785-791 https://doi.org/10.1016/0092-8674(89)90683-1
  29. Outters P, Jaeger S, Zaarour N and Ferrier P (2015) Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 128, 363-413 https://doi.org/10.1016/bs.ai.2015.08.002
  30. ten Boekel E, Melchers F and Rolink A (1995) The status of Ig loci rearrangements in single cells from different stages of B cell development. Int Immunol 7, 1013-1019 https://doi.org/10.1093/intimm/7.6.1013
  31. Ehlich A, Martin V, Muller W and Rajewsky K (1994) Analysis of the B-cell progenitor compartment at the level of single cells. Curr Biol CB 4, 573-583 https://doi.org/10.1016/S0960-9822(00)00129-9
  32. Mostoslavsky R, Alt FW and Rajewsky K (2004) The lingering enigma of the allelic exclusion mechanism. Cell 118, 539-544 https://doi.org/10.1016/j.cell.2004.08.023
  33. Gutzeit C, Chen K and Cerutti A (2018) The enigmatic function of IgD: some answers at last. Eur J Immunol 48, 1101-1113 https://doi.org/10.1002/eji.201646547
  34. Honjo T, Nagaoka H, Shinkura R and Muramatsu M (2005) AID to overcome the limitations of genomic information. Nat Immunol 6, 655-661 https://doi.org/10.1038/ni1218
  35. Pilzecker B and Jacobs H (2019) Mutating for Good: DNA Damage Responses During Somatic Hypermutation. Front Immunol 10, 438 https://doi.org/10.3389/fimmu.2019.00438
  36. Goossens T, Klein U and Kuppers R (1998) Frequent occurrence of deletions and duplications during somatic hypermutation: Implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci U S A 95, 2463-2468 https://doi.org/10.1073/pnas.95.5.2463
  37. Yeap LS, Hwang JK, Du Z et al (2015) Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes. Cell 163, 1124-1137 https://doi.org/10.1016/j.cell.2015.10.042
  38. Manser T, Tumas-Brundage KM, Casson LP et al (1998) The roles of antibody variable region hypermutation and selection in the development of the memory B-cell compartment. Immunol Rev 162, 183-196 https://doi.org/10.1111/j.1600-065X.1998.tb01441.x
  39. Delpy L, Sirac C, Le Morvan C and Cogne M (2004) Transcription-dependent somatic hypermutation occurs at similar levels on functional and nonfunctional rearranged IgH alleles. J Immunol Baltim Md 1950 173, 1842-1848
  40. Allen CD, Okada T and Cyster JG (2007) Germinal-center organization and cellular dynamics. Immunity 27, 190-202 https://doi.org/10.1016/j.immuni.2007.07.009
  41. Stewart I, Radtke D, Phillips B, McGowan SJ and Bannard O (2018) Germinal Center B Cells Replace Their Antigen Receptors in Dark Zones and Fail Light Zone Entry when Immunoglobulin Gene Mutations are Damaging. Immunity 49, 477-489.e7 https://doi.org/10.1016/j.immuni.2018.08.025
  42. Victora GD and Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30, 429-457 https://doi.org/10.1146/annurev-immunol-020711-075032
  43. Manis JP, Tian M and Alt FW (2002) Mechanism and control of class-switch recombination. Trends Immunol 23, 31-39 https://doi.org/10.1016/S1471-4906(01)02111-1
  44. Nutt SL, Hodgkin PD, Tarlinton DM and Corcoran LM (2015) The generation of antibody-secreting plasma cells. Nat Rev Immunol 15, 160-171 https://doi.org/10.1038/nri3795
  45. Todd DJ, McHeyzer-Williams LJ, Kowal C et al (2009) XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J Exp Med 206, 2151-2159 https://doi.org/10.1084/jem.20090738
  46. Takagaki Y, Seipelt RL, Peterson ML and Manley JL (1996) The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87, 941-952 https://doi.org/10.1016/S0092-8674(00)82000-0
  47. Stalder L and Muhlemann O (2007) Transcriptional silencing of nonsense codon-containing immunoglobulin micro genes requires translation of its mRNA. J Biol Chem 282, 16079-16085 https://doi.org/10.1074/jbc.M610595200
  48. Ashi MO, Srour N, Lambert JM et al (2018) Physiological and druggable skipping of immunoglobulin variable exons in plasma cells. Cell Mol Immunol 16, 810-819
  49. Daly J, Licence S, Nanou A, Morgan G and Martensson IL (2007) Transcription of productive and nonproductive VDJ-recombined alleles after IgH allelic exclusion. EMBO J 26, 4273-4282 https://doi.org/10.1038/sj.emboj.7601846
  50. Delpy L, Sirac C, Magnoux E, Duchez S and Cogne M (2004) RNA surveillance down-regulates expression of nonfunctional kappa alleles and detects premature termination within the last kappa exon. Proc Natl Acad Sci U S A 101, 7375-7380 https://doi.org/10.1073/pnas.0305586101
  51. Holwerda SJ, van de Werken HJ, Ribeiro de Almeida C et al (2013) Allelic exclusion of the immunoglobulin heavy chain locus is independent of its nuclear localization in mature B cells. Nucleic Acids Res 41, 6905-6916 https://doi.org/10.1093/nar/gkt491
  52. Eberle AB, Herrmann K, Jack HM and Muhlemann O (2009) Equal transcription rates of productively and nonproductively rearranged immunoglobulin mu heavy chain alleles in a pro-B cell line. RNA 15, 1021-1028 https://doi.org/10.1261/rna.1516409
  53. Lejeune F (2017) Nonsense-mediated mRNA decay at the crossroads of many cellular pathways. BMB Rep 50, 175-185 https://doi.org/10.5483/BMBRep.2017.50.4.015
  54. Lejeune F and Maquat LE (2005) Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 17, 309-315 https://doi.org/10.1016/j.ceb.2005.03.002
  55. Muhlemann O, Mock-Casagrande CS, Wang J et al (2001) Precursor RNAs harboring nonsense codons accumulate near the site of transcription. Mol Cell 8, 33-43 https://doi.org/10.1016/S1097-2765(01)00288-X
  56. Singh AK, Choudhury SR, De S et al (2019) The RNA helicase UPF1 associates with mRNAs co-transcriptionally and is required for the release of mRNAs from gene loci. ELife 8, pii: e41444
  57. Chang YF, Imam JS and Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76, 51-74 https://doi.org/10.1146/annurev.biochem.76.050106.093909
  58. Karousis ED and Muhlemann O (2019) Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Cold Spring Harb Perspect Biol 11, pii: a032862
  59. Baumann B, Potash MJ and Kohler G (1985) Consequences of frameshift mutations at the immunoglobulin heavy chain locus of the mouse. EMBO J 4, 351-359 https://doi.org/10.1002/j.1460-2075.1985.tb03636.x
  60. Connor A, Wiersma E and Shulman MJ (1994) On the linkage between RNA processing and RNA translatability. J Biol Chem 269, 25178-25184 https://doi.org/10.1016/S0021-9258(17)31514-4
  61. Jack HM, Berg J and Wabl M (1989) Translation affects immunoglobulin mRNA stability. Eur J Immunol 19, 843-847 https://doi.org/10.1002/eji.1830190510
  62. Gudikote JP, Imam JS, Garcia RF and Wilkinson MF (2005) RNA splicing promotes translation and RNA surveillance. Nat Struct Mol Biol 12, 801-809 https://doi.org/10.1038/nsmb980
  63. Eberle AB, Stalder L, Mathys H, Orozco RZ and Muhlemann O (2008) Posttranscriptional Gene Regulation by Spatial Rearrangement of the 3′ Untranslated Region. PLoS Biol 6, e92 https://doi.org/10.1371/journal.pbio.0060092
  64. Kim YK and Maquat LE (2019) UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA N Y N 25, 407-422 https://doi.org/10.1261/rna.070136.118
  65. Neu-Yilik G, Raimondeau E, Eliseev B et al (2017) Dual function of UPF3B in early and late translation termination. EMBO J 36, 2968-2986 https://doi.org/10.15252/embj.201797079
  66. Maquat LE (2002) NASty effects on fibrillin pre-mRNA splicing: another case of ESE does it, but proposals for translation-dependent splice site choice live on. Genes Dev 16, 1743-1753 https://doi.org/10.1101/gad.1014502
  67. Valentine CR (1998) The association of nonsense codons with exon skipping. Mutat Res 411, 87-117 https://doi.org/10.1016/S1383-5742(98)00010-6
  68. Nogues G, Kadener S, Cramer P et al (2003) Control of alternative pre-mRNA splicing by RNA Pol II elongation: faster is not always better. IUBMB Life 55, 235-241 https://doi.org/10.1080/1521654031000119830
  69. Cenci S and Sitia R (2007) Managing and exploiting stress in the antibody factory. FEBS Lett 581, 3652-3657 https://doi.org/10.1016/j.febslet.2007.04.031
  70. Cogne M and Guglielmi P (1993) Exon skipping without splice site mutation accounting for abnormal immunoglobulin chains in nonsecretory human myeloma. Eur J Immunol 23, 1289-1293 https://doi.org/10.1002/eji.1830230615
  71. Cogne M, Bakhshi A, Korsmeyer SJ and Guglielmi P (1988) Gene mutations and alternate RNA splicing result in truncated Ig L chains in human gamma H chain disease. J Immunol Baltim Md 1950 141, 1738-1744
  72. Cogne M, Silvain C, Khamlichi AA and Preud'homme JL (1992) Structurally abnormal immunoglobulins in human immunoproliferative disorders. Blood 79, 2181-2195 https://doi.org/10.1182/blood.V79.9.2181.2181
  73. Buhler M, Paillusson A and Muhlemann O (2004) Efficient downregulation of immunoglobulin mu mRNA with premature translation-termination codons requires the 5'-half of the VDJ exon. Nucleic Acids Res 32, 3304-3315 https://doi.org/10.1093/nar/gkh651
  74. Inacio A, Silva AL, Pinto J et al (2004) Nonsense mutations in close proximity to the initiation codon fail to trigger full nonsense-mediated mRNA decay. J Biol Chem 279, 32170-32180 https://doi.org/10.1074/jbc.M405024200
  75. Peixeiro I, Inacio A, Barbosa C, Silva AL, Liebhaber SA and Romao L (2012) Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations. Nucleic Acids Res 40, 1160-1173 https://doi.org/10.1093/nar/gkr820