DOI QR코드

DOI QR Code

Identification of Soluble Epoxide Hydrolase Inhibitors from the Seeds of Passiflora edulis Cultivated in Vietnam

  • Cuong, To Dao (Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST)) ;
  • Anh, Hoang Thi Ngoc (Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST)) ;
  • Huong, Tran Thu (Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST)) ;
  • Khanh, Pham Ngoc (Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST)) ;
  • Ha, Vu Thi (Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST)) ;
  • Hung, Tran Manh (Department of Biomedical Sciences, Institute for Research and Executive Education (VNUK), The University of Danang) ;
  • Kim, Young Ho (College of Pharmacy, Chungnam National University) ;
  • Cuong, Nguyen Manh (Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST))
  • 투고 : 2019.08.28
  • 심사 : 2019.10.21
  • 발행 : 2019.12.31

초록

Soluble epoxide hydrolases (sEH) are enzymes present in all living organisms, metabolize epoxy fatty acids to 1,2-diols. sEH in the metabolism of polyunsaturated fatty acids plays a key role in inflammation. In addition, the endogenous lipid mediators in cardiovascular disease are also broken down to diols by the action of sEH that enhanced cardiovascular protection. In this study, sEH inhibitory guided fractionation led to the isolation of five phenolic compounds trans-resveratrol (1), trans-piceatannol (2), sulfuretin (3), (+)-balanophonin (4), and cassigarol E (5) from the ethanol extract of the seeds of Passiflora edulis Sims cultivated in Vietnam. The chemical structures of isolated compounds were determined by the interpretation of NMR spectral data, mass spectra, and comparison with data from the literature. The soluble epoxide hydrolase (sEH) inhibitory activity of isolated compounds was evaluated. Among them, trans-piceatannol (2) showed the most potent inhibitory activity on sEH with an IC50 value of 3.4 μM. This study marks the first time that sulfuretin (3) was isolated from Passiflora edulis as well as (+)-balanophonin (4), and cassigarol E (5) were isolated from Passiflora genus.

키워드

참고문헌

  1. Morisseau, C.; Hammock, B. D. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 37-58. https://doi.org/10.1146/annurev-pharmtox-011112-140244
  2. Morisseau, C.; Inceoglu, B.; Schmelzer, K.; Tsai, H. J.; Jinks, S. L.; Hegedus, C. M.; Hammock, B. D. J. Lipid Res. 2010, 51, 3481-3490. https://doi.org/10.1194/jlr.M006007
  3. Lin, W. K.; Falck, J. R.; Wong, P. Y. Biochem. Biophys. Res. Commun. 1990, 167, 977-981. https://doi.org/10.1016/0006-291X(90)90619-X
  4. Inceoglu, B.; Jinks, S. L.; Schmelzer, K. R.; Waite, T.; Kim, I. H.; Hammock, B. D. Life Sci. 2006, 79, 2311-2319. https://doi.org/10.1016/j.lfs.2006.07.031
  5. Yu, Z.; Xu, F.; Huse, L. M.; Morisseau, C.; Draper, A. J.; Newman, J. W.; Parker, C.; Graham, L.; Engler, M. M.; Hammock, B. D.; Zeldin, D. C.; Kroetz, D. L. Circ. Res. 2000, 87, 992-998. https://doi.org/10.1161/01.RES.87.11.992
  6. Kim, J. H.; Tai, B. H.; Yang, S. Y.; Kim, J. E.; Kim, S. K.; Kim, Y. H. Bull. Korean Chem. Soc. 2015, 36, 300-304. https://doi.org/10.1002/bkcs.10068
  7. Kim, J. H.; Cho, C. W.; Tai, B. H.; Yang, S. Y.; Choi, G. S.; Kang, J. S.; Kim, Y. H. Molecules 2015, 20, 21405-21414. https://doi.org/10.3390/molecules201219774
  8. Jo, A. R.; Kim, J. H.; Yan, X. T.; Yang, S. Y.; Kim, Y. H. J. Enzyme Inhib. Med. Chem. 2016, 31, 70-78. https://doi.org/10.1080/14756366.2016.1189421
  9. Lee, G. Y.; Kim, J. H.; Choi, S. K.; Kim, Y. H. Bioorg. Med. Chem. Lett. 2015, 25, 5097-5101. https://doi.org/10.1016/j.bmcl.2015.10.014
  10. Kim, J. H.; Morgan, A. M. A.; Tai, B. H.; Van, D. T.; Cuong, N. M.; Kim, Y. H. J. Enzyme Inhib. Med. Chem. 2016, 31, 640-644. https://doi.org/10.3109/14756366.2015.1057719
  11. Khanh, P. N.; Duc, H. V.; Huong, T. T.; Son, N. T.; Ha, V. T.; Van, D. T.; Tai, B. H.; Kim, J. E.; Jo, A. R.; Kim, Y. H.; Cuong, N. M. Fitoterapia 2016, 109, 39-44. https://doi.org/10.1016/j.fitote.2015.10.013
  12. Thokchom, R.; Mandal, G. J. Agric. Eng. Food Technol. 2017, 4, 27-30.
  13. Beninca, J. P.; Montanher, A. B.; Zucolotto, S. M.; Schenkel, E. P.; Frode, T. S. Food Chem. 2007, 104, 1097-1105. https://doi.org/10.1016/j.foodchem.2007.01.020
  14. Ichimura, T.; Yamanaka, A.; Ichiba, T.; Toyokawa, T.; Kamada, Y.; Tamamura, T.; Maruyama, S. Biosci. Biotechnol. Biochem. 2006, 70, 718-721. https://doi.org/10.1271/bbb.70.718
  15. Lourith, N.; Kanlayavattanakul, M. J. Oleo Sci. 2013, 64, 235-240. https://doi.org/10.5650/jos.62.235
  16. Puricelli, L.; Dell'Aica, I.; Sartorb, L.; Garbisa, S.; Caniato, R. Fitoterapia 2003, 74, 302-304. https://doi.org/10.1016/S0367-326X(03)00023-6
  17. Coleta, M.; Campos, M. G.; Cotrim, M. D.; Proenca da Cunha, A. Pharmacopsychiatry 2001, 34, S20-S21. https://doi.org/10.1055/s-2001-15460
  18. Pelegrini, P. B.; Noronha, E. F.; Muniz, M. A.; Vasconcelos, I. M.; Chiarello, M. D.; Oliveira, J. T.; Franco, O. L. Biochim. Biophys. Acta. 2006, 1764, 1141-1146. https://doi.org/10.1016/j.bbapap.2006.04.010
  19. Matsui, Y.; Sugiyama, K.; Kamei, M.; Takahashi, T.; Suzuki, T.; Katagata, Y.; Ito, T. J. Agric. Food Chem. 2010, 58, 11112-11118. https://doi.org/10.1021/jf102650d
  20. Bombardelli, E.; Bonati, A.; Gabetta, B.; Martinelli, E. M.; Mustich, G.; Danieli, G. Phytochemisty 1975, 14, 2661-2665. https://doi.org/10.1016/0031-9422(75)85246-0
  21. Mareck, U.; Herrmann, K.; Galensa, R.; Wray, V. Phytochemistry 1991, 30, 3486-3487. https://doi.org/10.1016/0031-9422(91)83241-C
  22. Seigler, D. S.; Pauli, G. F.; Nahrstedt, A.; Leen, R. Phytochemistry 2002, 60, 873-882. https://doi.org/10.1016/S0031-9422(02)00170-X
  23. Pereira, C. A.; Yariwake, J. H.; Lancas, F. M.; Wauters, J. N.; Tits, M.; Angenot, L. Phytochem. Anal. 2004, 15, 241-248. https://doi.org/10.1002/pca.778
  24. Sano, S.; Sugiyama, K.; Ito, T.; Katano, Y.; Ishihata, A. J. Agric. Food Chem. 2011, 59, 6209-6213. https://doi.org/10.1021/jf104959t
  25. Piombo, G.; Barouh N.; Barea, B.; Boulanger, R.; Brat, P.; Pina, M.; Villeneuve, P. OCL 2006, 13, 195-199. https://doi.org/10.1051/ocl.2006.0026
  26. Mattivi, F.; Reniero, F.; Korhammer, S. J. Agric. Food Chem. 1995, 43, 1820-1823. https://doi.org/10.1021/jf00055a013
  27. Mathi, P.; Das, S.; Nikhil, K.; Roy, P.; Yerra, S.; Ravada, S. R.; Bokka, V. R.; Botlagunta, M. Int. J. Prev. Med. 2015, 6, 101. https://doi.org/10.4103/2008-7802.167181
  28. Kukreja, A.; Wadhwa, N.; Tiwari, A. J. Blood Disord. Transfus. 2014, 5, 240. https://doi.org/10.4172/2155-9864.1000240
  29. Gaur, R.; Kumar, S.; Trivedi, P.; Bhakuni, R. S.; Bawankule, D. U.; Pal, A.; Shanker, K. Nat. Prod. Commun. 2010, 5, 1243-1246.
  30. Junior, G. M. V.; Sousa, C. M. M.; Cavalheiro, A. J.; Lago, J. H. G.; Chaves, M. H. Helv. Chim. Acta 2008, 91, 2159-2167. https://doi.org/10.1002/hlca.200890233
  31. Lee, D. S.; Jeong, G. S.; Li, B.; Park, H.; Kim, Y. C. Int. Immunopharmacol. 2010, 10, 850-858. https://doi.org/10.1016/j.intimp.2010.04.019
  32. Lee, K. W.; Chung, K. S.; Seo, J. H.; Yim, S. V.; Park, H. J.; Choi, J. H.; Lee, K. T. J. Cell. Biochem. 2012, 113, 2835-2844. https://doi.org/10.1002/jcb.24158
  33. Pariyar, R.; Lamichhane, R.; Jung, H. J.; Kim, S. Y.; Seo, J. Int. J. Mol. Sci. 2017, 18, E2753. https://doi.org/10.3390/ijms18122753
  34. Li, J. L.; Li, N.; Xing, S. S.; Zhang, N.; Li, B. B.; Chen, J. G.; Ahn, J. S.; Cui, L. Arch. Pharm. Res. 2017, 40, 1265-1270. https://doi.org/10.1007/s12272-015-0659-7
  35. Esposito, T.; Sansone, F.; Franceschelli, S.; Del Gaudio, P.; Picerno, P.; Aquino, R. P.; Mencherini, T. Int. J. Mol. Sci. 2017, 18, E392. https://doi.org/10.3390/ijms18020392
  36. Boga, M.; Yilmaz, P. K.; Cebe, D. B.; Fatima, M.; Siddiqui, B. S.; Kolak, U. Z. Naturforsch C J. Biosci. 2014, 69, 381-390. https://doi.org/10.5560/znc.2014-0071
  37. Lim, S. Y.; Subedi, L.; Shin, D.; Kim, C. S.; Lee, K. R.; Kim, S. Y. Biomol. Ther. 2017, 25, 519-527. https://doi.org/10.4062/biomolther.2016.224
  38. Baba, K.; Kido, T.; Taniguchi, M.; Kozawaqa, M. Phytochemistry 1994, 36, 1509-1513. https://doi.org/10.1016/S0031-9422(00)89752-6
  39. Bunluepuech, K.; Wattanapiromsakul, C.; Tewtrakul, S. Songklanakarin J. Sci. Technol. 2013, 35, 665-669.
  40. Tran, H. H. T.; Nguyen, M. C.; Le, H. T.; Nguyen, T. L.; Pham, T. B.; Chau, V. M.; Nguyen, H. N.; Nguyen, T. D. Pharm. Biol. 2014, 52, 74-77. https://doi.org/10.3109/13880209.2013.814692
  41. Yuenyongsawad, S.; Bunluepuech, K.; Wattanapiromsakul, C.; Tewtrakul, S. Songklanakarin J. Sci. Technol. 2014, 36, 189-194.
  42. Buscato, E.; Buttner, D.; Bruggerhoff, A.; Klingler, F. M.; Weber, J.; Scholz, B.; Zivkovic, A.; Marschalek, R.; Stark, H.; Steinhilber, D.; Bode, H. B.; Proschak, E. ChemMedChem 2013, 8, 919-923. https://doi.org/10.1002/cmdc.201300057
  43. Sun, Y. N.; Li, W.; Kim, J. H.; Yan, X. T.; Kim, J. E.; Yang, S. Y.; Kim, Y. H. Arch. Pharm. Res. 2015, 38, 998-1004. https://doi.org/10.1007/s12272-014-0520-4
  44. Broadwell, R. D.; Sofroniew, M. V. Exp. Neurol. 1993, 120, 245-263. https://doi.org/10.1006/exnr.1993.1059

피인용 문헌

  1. Selective Extraction of Piceatannol from Passiflora edulis by-Products: Application of HSPs Strategy and Inhibition of Neurodegenerative Enzymes vol.22, pp.12, 2021, https://doi.org/10.3390/ijms22126248