DOI QR코드

DOI QR Code

A comparative analysis of the kinematical characteristics of Forehand & Backhand Flying Disc Throwing

플라잉디스크 포핸드 및 백핸드 던지기 동작의 운동학적 특성 비교

  • 김미향 (국민대학교 스포츠산업레저학과) ;
  • 박종철 (한국스포츠정책과학원 스포츠과학연구실) ;
  • 변경석 (벡터바이오)
  • Received : 2019.11.06
  • Accepted : 2019.12.20
  • Published : 2019.12.28

Abstract

This study was to provide quantitative basic data on the forehand and backhand throw movements of flying disks. For this purpose, the kinematic variables were calculated using the three-dimensional motion analysis system. A comprehensive analysis of the study variables showed that it is important to throw flying disks accurately as well as far away, so in P2 and P3 it is necessary to control forward movement and concentrate on the rotation of the joints. In addition, rotational force transfer from pelvis to body is considered important for efficient rotational movement. The forehand was found to mainly utilize the movement of the upper extremity joint to perform throwing motion, while the backhand throw was found to be relatively utilized for the rotation of the torso and pelvis. Based on the quantitative data of this study, we hope that it can be used as a basic material for on-site training of Flying Discs.

본 연구는 플라잉디스크의 포핸드와 백핸드 던지기 동작에 대한 정량적 기초자료를 제공하기 위해 수행하였으며 이를 위해 3차원 동작분석 기법을 활용하여 운동학적 변인을 산출하였다. 연구 변인을 종합하여 분석한 결과 플라잉디스크는 멀리 던지는 것뿐만 아니라 정확하게 던지는 것이 중요하므로 P2와 P3에서는 전방으로의 이동을 제어하고 관절의 회전 운동에 집중해야하는 것으로 나타났다. 또한 효율적인 회전 운동을 위해 골반에서 몸통으로 회전력 전이가 중요한 것으로 판단된다. 포핸드는 상지 관절의 움직임을 주로 활용하여 던지기 동작을 수행하는 반면 백핸드 던지기는 비교적 몸통 및 골반의 회전을 주로 활용하여 던지는 것으로 나타났다. 본 연구의 정량적 자료를 바탕으로 플라잉디스크 현장 교육을 위한 기초자료로 활용될 수 있기를 기대한다.

Keywords

References

  1. M. S. Ko. (2011). Pleasant physical education class using flying disks. Korean Society For The Study Of Physical Education Academic Presentation Conference, 47-59.
  2. J. H. Choi. (2014). Sport for All: Rediscovery of Sport for All(Flying disks). Sport Science, 128, 54-57.
  3. M. S. Ko. (2011). Pleasant physical education class using Flying disks. The Korean Society for The Study of Physical Education Conference, 47-59.
  4. B. S. Na, S. J. Lee & O. H. Kim. (2008). Impacts of Flying Disc Handball classes in P.E. on High schoolers' self and group consciousness. The Korean Journal of Sport, 6(2), 35-44.
  5. H. W. Kim & O. J. Kim. (2012). An Investigation Applicability P.E of Flying Disc Ultimate Game Applied to Area Form Competition Activity. The Korean Journal of Sport, 10(2), 295-309.
  6. T. W. Kim, S. H. Park, S, K. Sung & J. H. Lee.(2017). Numerical Analysis of Aerodynamic Charateristics of a Flyins Disk Considering the Loading Effect. Korean Society Of Computational Fluids Engineering Conference, 20-21.
  7. D. W. Park, T. W. Kim, S. H. Park & S, K. Sung. (2016). Numerical Analysis of 3D Aerodynamic Charateristics for Spinning Flying Disc. Korean Society Of Computational Fluids Engineering Conference, 38-39.
  8. T. W. Kim, S. H. Park, S. K. Sung & J. H. Lee. (2017). Aerodynamic Characteristics of Flying Disc Configurations Considering IoT Module Thickness. Korean Society Of Computational Fluids Engineering, 22(3), 28-35.
  9. Potts, J. R. & Crowther, W. J. (2001). Flight control of a spin stabilised axi-symmetric disc-wing. 39th Aerospace Science Meeting and Exhibit.
  10. J. H. Cha. (2015). Kinetic comparative analysis of tennis backhand stroke for interdisciplinary convergence research. Journal of Digital Convergence, 13(7), 373-380. https://doi.org/10.14400/JDC.2015.13.7.373
  11. J. H. Song, J. H. Moon & D. M. Kim. (2015). Cases analysis of vault "Shirai-Kim Hee Hoon" technique for assessing skill completeness. Journal of Digital Convergence, 13(11), 441-448. https://doi.org/10.14400/JDC.2015.13.11.441
  12. K. H. Kim & T. K. Kim. (2014). Correlation of isokinetic strength and angular velocity of knee during Fente motion in elite fencer. Journal of Digital Convergence, 12(9), 407-415. https://doi.org/10.14400/JDC.2014.12.9.407
  13. T. W. Kim, S. H. Park, S. K. Sung & J. H. Lee. (2017). Aerodynamic characteristics of flying disc configurations considering IoT module thickness. The Journal of Computational Fluids Engineering, 22(3), 28-35. https://doi.org/10.6112/kscfe.2017.22.3.028
  14. S. M. Hong, S. H. Shin & S. H. Lee. (2005). The kinematical analysis of technical movement in discus throwing. Korean Journal of Sport Science, 16(4), 10-19.
  15. J. I. Kim & J. B. Seon. (2003). The kinematics analysis of discus throwing. Korean Journal of Sport Biomechanics, 13(2), 29-47. https://doi.org/10.5103/KJSB.2003.13.2.029
  16. R. J. Gregor, W. C. Whiting & R. W. McCoy. (1985). Kinematic analysis of Olympic discus throwers. Journal of Applied Biomechanics, 1(2), 131-138.
  17. A. Knicker. (1992). Kinematic characteristics of the discus throw. Modern Athlete and Coach, 30(1), 3-6.
  18. B. Yu, J. Broker & L. J. Silvester. (2002). Athletics: A kinetic analysis of discus‐throwing techniques. Sports Biomechanics, 1(1), 25-45. https://doi.org/10.1080/14763140208522785
  19. M. S. Ko. (2011). Physical education class using flying disc. Korean Society For The Study Of Physical Education, 47-59.
  20. J. Lee & L.S. Jeong. (2017). Kinematic analysis affecting female discus throwers performance distance in international athletics throwing meeting. Journal of Sport and Leisure Studies, 67, 457-466. https://doi.org/10.51979/KSSLS.2017.02.67.457
  21. Hay, J. G. (1993). The biomechanics of sports techniques. Englewood Cliffs, NJ: Prentice-Hall.