References
- Y. Jin, M. Olhofer & B. Sendhoff. (2002). A framework for evolutionary optimization with approximate fitness functions. IEEE Transactions on Evolutionary Computation, 6(5), 481-494. https://doi.org/10.1109/TEVC.2002.800884
- Y. Jin. (2011). Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm and Evolutionary Computation, 1(2), 61-70. https://doi.org/10.1016/j.swevo.2011.05.001
- D. Lim, Y. Jin, Y. S. Ong & B. Sendhoff. (2009). Generalizing surrogate-assisted evolutionary computation. IEEE transactions on evolutionary computation, 14(3), 329-355. https://doi.org/10.1109/TEVC.2009.2027359
- Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane & K. Y. Lum. (2006). Combining global and local surrogate models to accelerate evolutionary optimization. IEEE transactions on systems, man, and cybernetics, 37(1), 66-76.
- D. Lim, Y. S. Ong, Y. Jin & B. Sendhoff. (2007). A study on metamodeling techniques, ensemble, and multisurrogates in evolutionary computation. Proceedings of 9th International Conference on Parallel Problem Solving from Nature. (pp. 1288-1295). London : Springer.
- M. N. Le, Y. S. Ong, S. Menzel, Y. Jin & B. Sendhoff. (2013). Evolution by adapting surrogates. Evolutionary computation, 21(2), 313-340. https://doi.org/10.1162/EVCO_a_00079
- Z. Zhou, Y. S. Ong, M. H. Nguyen & D. Lim. (2005). A study on polynomial regression and gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm. IEEE congress on evolutionary computation 3, (pp. 2832-2839). Edinburgh : IEEE.
- M. Zaefferer. (2018). Surrogate model for discrete optimization problems. Dortmund : Technical University of Dortmund.
- S. Verel, B. Derbel, A. Liefooghe, H. Aguirre & K. Tanaka. (2018). A surrogate model based on Walsh decomposition for pseudo-boolean functions. Proceedings of 15th International Conference on Parallel Problem Solving from Nature. (pp. 181-193). Coimbra : Springer.
- Y. H. Kim, A. Moraglio, A. Kattan & Y. Yoon. (2014). Geometric generalization of surrogate model-based optimization to combinatorial and program spaces. Mathematical Problems in Engineering, Vol. 2014, Article ID 184540, 10 pages.
- M. D. Vose & A. H. Wright. (1998). The simple genetic algorithm and the Walsh transform: part 1, theory. Evolutionary Computation, 6(2), 253-273. https://doi.org/10.1162/evco.1998.6.3.253
- K. Swingler. (2019). Learning and searching pseudo-Boolean surrogate functions from small samples. Evolutionary Computation, 1-23.
- A. Kaffuman & E. D. Weinberger. (1989). The NK model of rugged fitness landscapes and its application to maturation of the immune response. Journal of Theoretical Biology, 141(2), 211-245. https://doi.org/10.1016/s0022-5193(89)80019-0
- J. Lee & Y. H. Kim. (2019). Epistasis-based basis estimation method for simplifying the problem space of an evolutionary search in binary representation. Complexity, 2019, 13.
- Y. S. Ong, P. B. Nair & K. Y. Lum. (2006). Max-min surrogate-assisted evolutionary algorithm for robus design. IEEE transactions on evolutionary computation, 10(4), 392-404. https://doi.org/10.1109/TEVC.2005.859464