DOI QR코드

DOI QR Code

Effect of Discrete Walsh Transform in Metamodel-assisted Genetic Algorithms

이산 월시 변환이 메타모델을 사용한 유전 알고리즘에 미치는 영향

  • 유동필 (광운대학교 컴퓨터과학과) ;
  • 김용혁 (광운대학교 소프트웨어학부)
  • Received : 2019.11.15
  • Accepted : 2019.12.20
  • Published : 2019.12.28

Abstract

If it takes much time to calculate the fitness of the solution in genetic algorithms, it is essential to create a metamodel. Much research has been completed to improve the performance of metamodels. In this study, we tried to get a better performance of metamotel using discrete Walsh transform in discrete domain. We transforms the basis of the solution and creates a metamodel using the transformed solution. We experimented with NK-landscape, a representative function of the pseudo-boolean function, and provided empirical evidence on the performance of the proposed model. When we performed the genetic algorithm using the proposed model, we confirmed that the genetic algorithm found a better solution. In particular, our metamodel showed better performance than that using the radial basis function network that modified the similarity function for the discrete domain.

유전 알고리즘에서 해의 적합도를 계산하는 시간이 오래 걸린다면 메타모델을 만드는 것은 필수적이다. 이에 메타모델의 성능을 높여 유전 알고리즘이 더 좋을 해를 찾게 하기 위한 연구가 진행되어 왔다. 본 연구에서 우리는 이산적인 도메인에서 이산 월시 변환을 사용해 메타모텔의 성능을 높이고자 하였다. 이산 월시 변환을 통해 해의 기저를 변환했고 변환된 해를 사용해 메타모델을 만들었다. 의사-불리언 함수의 대표적인 함수인 NK 모형을 대상으로 실험했고 제안된 모델의 성능에 대한 실증적인 증거를 제공했다. 제안된 모델을 사용해 유전 알고리즘을 수행했을 때, 유전알고리즘이 더 좋은 해를 찾음을 확인했다. 특히, 선행 연구인 유사도 함수를 이산적인 도메인에 적합하게 수정한 방사기저 함수 네트워크보다 좋은 성능을 보였다.

Keywords

References

  1. Y. Jin, M. Olhofer & B. Sendhoff. (2002). A framework for evolutionary optimization with approximate fitness functions. IEEE Transactions on Evolutionary Computation, 6(5), 481-494. https://doi.org/10.1109/TEVC.2002.800884
  2. Y. Jin. (2011). Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm and Evolutionary Computation, 1(2), 61-70. https://doi.org/10.1016/j.swevo.2011.05.001
  3. D. Lim, Y. Jin, Y. S. Ong & B. Sendhoff. (2009). Generalizing surrogate-assisted evolutionary computation. IEEE transactions on evolutionary computation, 14(3), 329-355. https://doi.org/10.1109/TEVC.2009.2027359
  4. Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane & K. Y. Lum. (2006). Combining global and local surrogate models to accelerate evolutionary optimization. IEEE transactions on systems, man, and cybernetics, 37(1), 66-76.
  5. D. Lim, Y. S. Ong, Y. Jin & B. Sendhoff. (2007). A study on metamodeling techniques, ensemble, and multisurrogates in evolutionary computation. Proceedings of 9th International Conference on Parallel Problem Solving from Nature. (pp. 1288-1295). London : Springer.
  6. M. N. Le, Y. S. Ong, S. Menzel, Y. Jin & B. Sendhoff. (2013). Evolution by adapting surrogates. Evolutionary computation, 21(2), 313-340. https://doi.org/10.1162/EVCO_a_00079
  7. Z. Zhou, Y. S. Ong, M. H. Nguyen & D. Lim. (2005). A study on polynomial regression and gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm. IEEE congress on evolutionary computation 3, (pp. 2832-2839). Edinburgh : IEEE.
  8. M. Zaefferer. (2018). Surrogate model for discrete optimization problems. Dortmund : Technical University of Dortmund.
  9. S. Verel, B. Derbel, A. Liefooghe, H. Aguirre & K. Tanaka. (2018). A surrogate model based on Walsh decomposition for pseudo-boolean functions. Proceedings of 15th International Conference on Parallel Problem Solving from Nature. (pp. 181-193). Coimbra : Springer.
  10. Y. H. Kim, A. Moraglio, A. Kattan & Y. Yoon. (2014). Geometric generalization of surrogate model-based optimization to combinatorial and program spaces. Mathematical Problems in Engineering, Vol. 2014, Article ID 184540, 10 pages.
  11. M. D. Vose & A. H. Wright. (1998). The simple genetic algorithm and the Walsh transform: part 1, theory. Evolutionary Computation, 6(2), 253-273. https://doi.org/10.1162/evco.1998.6.3.253
  12. K. Swingler. (2019). Learning and searching pseudo-Boolean surrogate functions from small samples. Evolutionary Computation, 1-23.
  13. A. Kaffuman & E. D. Weinberger. (1989). The NK model of rugged fitness landscapes and its application to maturation of the immune response. Journal of Theoretical Biology, 141(2), 211-245. https://doi.org/10.1016/s0022-5193(89)80019-0
  14. J. Lee & Y. H. Kim. (2019). Epistasis-based basis estimation method for simplifying the problem space of an evolutionary search in binary representation. Complexity, 2019, 13.
  15. Y. S. Ong, P. B. Nair & K. Y. Lum. (2006). Max-min surrogate-assisted evolutionary algorithm for robus design. IEEE transactions on evolutionary computation, 10(4), 392-404. https://doi.org/10.1109/TEVC.2005.859464