참고문헌
- V. T. Giap, Y. D. Lee, Y. S. Kim, and K. Y. Ahn, "Techno-Economic Analysis of Reversible Solid Oxide Fuel Cell System Couple with Waste Steam", Trans. of Korean Hydrogen and New Energy Society, Vol. 30, No. 1, 2019, pp. 21-28, doi: https://doi.org/10.7316/KHNES.2019.30.1.21.
- J. W. Ahn, "The significance of long-term perception on renewable energy and climate change", Trans. of Korean Hydrogen and New Energy Society, Vol. 29, No. 1, 2018, pp. 117-123, doi: https://doi.org/10.7316/KHNES.2018.29.1.117.
- California Hydrogen Business Council, "Power-to-gas: The Case for Hydrogen White Paper", 2015. Retrieved from https://www.californiahydrogen.org/wp-content/uploads/2018/01/CHBC-Hydrogen-Energy-Storage-White-Paper-FINAL.pdf.
- S. J. Jeong, N. H. Seo, S. B. Moon, and H. K. Lim, "Economic Feasibility Analysis for P2G Using PEM Water Electrolysis", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 3, 2017, pp. 231-237, doi: https://doi.org/10.7316/KHNES.2017.28.3.231.
-
G. I. Yeom, M. W. Seo, and Y. S. Baek, "A study on the
$CO_2$ methanation in Power to Gas (P2G) over Ni-Catalysts", Trans. of the Korean Hydrogen and New Energy Society, Vol. 30, No. 1, 2019, pp. 14-20, doi: https://doi.org/10.7316/KHNES.2019.30.1.14. - J. Xu, X. Su, H. Duan, B. Hou, Q. Lin, X. Liu, X. Pan, G. Pei, H. Geng, Y. Huang, and T. Zhang, "Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation", Journal of Catalysis, Vol. 333, 2016, pp. 227-237, doi: https://doi.org/10.1016/j.jcat.2015.10.025.
- M. Lehner, R. Tichler, H. Steinmuller,and M. Koppe, "Power-to-Gas: Technology and Business Models", Springer International, USA, 2014.
- M. Reub, T. Grube, M. Robinius, P. Preuster, P. Wasserscheid, and D. Stolten, "Seasonal strorage and alternative carriers: A flexible hydrogen supply chain model", Applied Energy, Vol. 200, 2017, pp. 290-302, doi: http://dx.doi.org/10.1016/j.apenergy.2017.05.050.
- DOE, "Multi-year research, development, and demonstration plan-3.2 hydrogen delivery", 2015. Retrieved from http://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22.
- D. Teichmann, W. Arlt, and P. Wasserscheid, "Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy", Int. J. Hydrogen Energy, Vol. 37, No. 23, 2012, pp. 18118-18132, doi: http://dx.doi.org/10.1016/j.ijhydene.2012.08.066.
- S. Krasae-In, J. H. Stang, and P. Neksa, "Development of large-scale hydrogen liquefaction processes from 1898 to 2009", Int. J. Hydrogen Energy, Vol. 35, No. 10, 2010, pp. 4524-4533, doi: http://dx.doi.org/10.1016/j.ijhydene.2010.02.109.
- U. Cardella, L. Decker, J. Sundberg, and H. Klein, "Process optimization for large-scale hydrogen liquefaction", Int. J. Hydrogen Energy, Vol. 42, No. 10, 2017, pp. 12339-12354, doi: http://dx.doi.org/10.1016/j.ijhydene.2017.03.167.
- S. Krasae-In, A. M. Bredesen, J. H. Stang, and P. Neksa, "Simulation and experiment of a hydrogen liquefaction test rig using a multi-component refrigerant refrigeration system", Int. J. Hydrogen Energy, Vol. 36, No. 1, 2011, pp. 907-919, doi: https://doi.org/10.1016/j.ijhydene.2010.09.005.
- S. K. Yun, "Design and Analysis for Hydrogen Liquefaction Process Using LNG Cold Energy", Journal of the Korean Institute of Gas, Vol. 15, No. 3, 2011, pp. 1-5, doi: http://dx.doi.org/10.7842/kigas.2011.15.3.001.
- H. Y. Lee, Y. Shao, S. H. Lee, G. T. Roh, K. W. Chun, and H. K. Kang, "Analysis and Assessment of Partial Re-liquefaction System for Liquefied Hydrogen Tankers Using Liquefied Natural Gas (LNG) and H2 Hybrid Propulsion", Int. J. Hydrogen Energy, Vol. 44, No. 29, 2019, pp. 15056-15071, doi: https://doi.org/10.1016/j.ijhydene.2019.03.277.