References
- I. K. Argyros, Convergence and Application of Newton-Type Iterations, Springer, New York, 2008.
- V. Candela and A. Marquina, Recurrence relation for rational cubic methods II: the Chebyshev method, Computing 45 (1990), 355-367. https://doi.org/10.1007/BF02238803
- E.L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer, New York, 1990.
- J.M. Gutierrez and M.A. Hernandez, A family of Chebyshev-Halley type methods in Banach spaces, Bull. Aust. Math. Soc. 55 (1997), 113-130. https://doi.org/10.1017/S0004972700030586
- J.M. Gutierrez and M.A. Hernandez, An acceleration of Newton's method: super-Halley method, Appl. Math. Comput. 117 (2001), 223-239. https://doi.org/10.1016/S0096-3003(99)00175-7
- P. K. Parida and D. K. Gupta, Semilocal convergence of a third order Chebyshevtype method under a mild differentiability condition, Int. J. Comput. Math. 87 (2010), 3405-3419. https://doi.org/10.1080/00207160903026626
- L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces. Pergamon Press, Oxford, 1982.
- M. Prasanth and D. K. Gupta, Semilocal convergence of a continuation method with Holder continuous second derivative in Banach spaces, J. Comput. Appl. Math. 236 (2012), 3174-3185. https://doi.org/10.1016/j.cam.2012.02.015
- M. Prasanth and D. K. Gupta, A Continuation method and its convergence for solving nonlinear equations in Banach spaces, Int. J. Comput. Meth. 10 (4) (2013), 1350021 (23 pages).
- M. Prasanth and D. K. Gupta, Convergence of a parametric Continuation method, Kodai Math. J. 37 (2014), 212-234. https://doi.org/10.2996/kmj/1396008256
- D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing. Brooks/Cole, Pacific Grove, 1991.
- Q. Wu and Y. Zhao, The convergence theorem for a family of deformed Chebyshev method in Banach space, Appl. Math. Comput. 182 (2006), 1369-1376. https://doi.org/10.1016/j.amc.2006.05.022
- C. Kumari and P. K. Parida, Local convergence analysis for Chebyshev's method, J. Appl. Math. Comput. 59(1-2) (2019), 405-421. https://doi.org/10.1007/s12190-018-1185-9
- Y. Ling and X. Xu, On the semilocal convergence behaviour of Halley's method, Comput. Optim. Appl. 58 (2014), 597-618. https://doi.org/10.1007/s10589-014-9641-4
- S. Smale, Newton's method estimates from data at one point. In: Ewing,R., Gross, K., Martin, C.(eds.) The Merging of Disciplines: New Directions in Pure, Applied and computational Mathematics, 185-196. Springer, New York, 1986.
- I. K. Argyros and R. Hongmin, Ball convergence theorems for Halley's method in Banach space, J. Appl. Math. Comput. 38 (2012), 453-465. https://doi.org/10.1007/s12190-011-0490-3
- J. B. Hilliart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms, Part 1. Springer, Berlin 1993.