DOI QR코드

DOI QR Code

CONVERGENCE OF A CONTINUATION METHOD UNDER MAJORANT CONDITIONS

  • Nisha, Shwet (Department of Mathematics Central University of Jharkhand) ;
  • Parida, P.K. (Department of Mathematics Central University of Jharkhand) ;
  • Kumari, Chandni (Department of Mathematics Central University of Jharkhand)
  • Received : 2019.06.12
  • Accepted : 2019.09.30
  • Published : 2019.12.30

Abstract

The paper is devoted to study local convergence of a continuation method under the assumption of majorant conditions. The method is used to approximate a zero of an operator in Banach space and is of third order. It is seen that the famous Kantorovich-type and Smale-type conditions are special cases of our majorant conditions. This infers that our result is a generalized one in comparison to results based on Kantorovich-type and Smale-type conditions. Finally a number of numerical examples have been computed to show applicability of the convergence analysis.

Keywords

References

  1. I. K. Argyros, Convergence and Application of Newton-Type Iterations, Springer, New York, 2008.
  2. V. Candela and A. Marquina, Recurrence relation for rational cubic methods II: the Chebyshev method, Computing 45 (1990), 355-367. https://doi.org/10.1007/BF02238803
  3. E.L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer, New York, 1990.
  4. J.M. Gutierrez and M.A. Hernandez, A family of Chebyshev-Halley type methods in Banach spaces, Bull. Aust. Math. Soc. 55 (1997), 113-130. https://doi.org/10.1017/S0004972700030586
  5. J.M. Gutierrez and M.A. Hernandez, An acceleration of Newton's method: super-Halley method, Appl. Math. Comput. 117 (2001), 223-239. https://doi.org/10.1016/S0096-3003(99)00175-7
  6. P. K. Parida and D. K. Gupta, Semilocal convergence of a third order Chebyshevtype method under a mild differentiability condition, Int. J. Comput. Math. 87 (2010), 3405-3419. https://doi.org/10.1080/00207160903026626
  7. L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces. Pergamon Press, Oxford, 1982.
  8. M. Prasanth and D. K. Gupta, Semilocal convergence of a continuation method with Holder continuous second derivative in Banach spaces, J. Comput. Appl. Math. 236 (2012), 3174-3185. https://doi.org/10.1016/j.cam.2012.02.015
  9. M. Prasanth and D. K. Gupta, A Continuation method and its convergence for solving nonlinear equations in Banach spaces, Int. J. Comput. Meth. 10 (4) (2013), 1350021 (23 pages).
  10. M. Prasanth and D. K. Gupta, Convergence of a parametric Continuation method, Kodai Math. J. 37 (2014), 212-234. https://doi.org/10.2996/kmj/1396008256
  11. D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing. Brooks/Cole, Pacific Grove, 1991.
  12. Q. Wu and Y. Zhao, The convergence theorem for a family of deformed Chebyshev method in Banach space, Appl. Math. Comput. 182 (2006), 1369-1376. https://doi.org/10.1016/j.amc.2006.05.022
  13. C. Kumari and P. K. Parida, Local convergence analysis for Chebyshev's method, J. Appl. Math. Comput. 59(1-2) (2019), 405-421. https://doi.org/10.1007/s12190-018-1185-9
  14. Y. Ling and X. Xu, On the semilocal convergence behaviour of Halley's method, Comput. Optim. Appl. 58 (2014), 597-618. https://doi.org/10.1007/s10589-014-9641-4
  15. S. Smale, Newton's method estimates from data at one point. In: Ewing,R., Gross, K., Martin, C.(eds.) The Merging of Disciplines: New Directions in Pure, Applied and computational Mathematics, 185-196. Springer, New York, 1986.
  16. I. K. Argyros and R. Hongmin, Ball convergence theorems for Halley's method in Banach space, J. Appl. Math. Comput. 38 (2012), 453-465. https://doi.org/10.1007/s12190-011-0490-3
  17. J. B. Hilliart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms, Part 1. Springer, Berlin 1993.