DOI QR코드

DOI QR Code

혐기성소화 슬러지 비율에 따른 미생물전기분해전지의 식종 특성

Startup of Microbial Electrolysis Cells with different mixing ratio of Anaerobic Digested Sludge and Buffer solution

  • 송근욱 (경남과학기술대학교 에너지공학과) ;
  • 백윤정 (경남과학기술대학교 에너지공학과) ;
  • 서휘진 (경남과학기술대학교 에너지공학과) ;
  • 장해남 (경남과학기술대학교 에너지공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과) ;
  • 이명은 (경남과학기술대학교 환경공학과) ;
  • 안용태 (경남과학기술대학교 에너지공학과)
  • Song, Geunwuk (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Baek, Yunjeong (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Seo, Hwijin (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Jang, Hae-Nam (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Chung, Jae Woo (Department of Environmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Lee, Myoung-Eun (Department of Environmental Engineering, Gyeongnam National University of Science and Technology) ;
  • Ahn, Yongtae (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
  • 투고 : 2019.11.26
  • 심사 : 2019.12.11
  • 발행 : 2019.12.20

초록

실험실 규모 회분식 미생물전기분해전지 반응기 (유효부피 20 mL)를 이용하여 수소가스 생산 및 식종기간 특성을 조사하였다. 총 6 cycle 동안 0.9 V를 인가하여 식종슬러지 혼합 비율 (혐기성소화 슬러지:50 mM PBS)에 따른 수소생산 및 식종기간을 분석한 결과 혼합비 1:1 반응기에서 9.8-20.9 mL 수소를 생산하였으며, 수소함량은 66.8-79.6%로 가장 높게 나타났다. 식종기간에 있어서는 혼합비 1:1 반응기 기준으로 약 12일 정도부터는 수소생산 및 전류밀도가 증가하는 것으로 나타났다. 또한 혼합비 1:2, 1:3, 1:4 반응기의 경우 cycle (2-6 cycle)에 따라 수소가스 생산량이 3.7-7.1 mL, 농도 5.8-65.8%로 변화하였으며, 혼합비 1:5, 1:6, 1:7 반응기의 수소가스 생산량은 0.5-0.7 mL, 농도 1.8-7.1%로 나타나 최대 혼합비 1:4까지 식종하는 것이 적합할 것으로 판단된다.

In this study, the influence of anaerobic digested sludge and 50 mM PBS (phosphate buffer solution) mixing ratio (1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7) on hydrogen production and inoculation period were examined. MECs were operated in fed-batch mode with an applied voltage of 0.9 V. As a result, in the 1:1 mixing ratio reactor, 9.8-20.9 mL of hydrogen was produced with the highest hydrogen content of 66.8-79.6%. Hydrogen gas production and power density increased from after 12 days of inoculation for the 1:1 mixing ratio reactor. In case of 1:2, 1:3 and 1:4 mixing ratio reactor, the hydrogen gas production was 3.7-7.1 mL and the hydrogen gas content was 5.8-65.8%. The hydrogen gas yield in 1:5, 1:6 and 1:7 ratio reactors, was 0.50-0.69 mL and hydrogen content range was 1.8-7.1%. The mixing ratio was found to be suitable for hydrogen production and inoculation period by mixing ratio up to 1:4.

키워드

참고문헌

  1. Liu, W., Huang, S., Zhou, A., Zhou, G., Ren, N., Wang, A. and Zhuang, G., "Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge", International Journal of Hydrogen Energy, 37(18), pp. 13859-13864. (2012). https://doi.org/10.1016/j.ijhydene.2012.04.090
  2. Kim, K.-Y. and Logan, B. E., "Nickel powder blended activated carbon cathodes for hydrogen production in microbial electrolysis cells", International Journal of Hydrogen Energy. (2019).
  3. Verhelst, S., "Recent progress in the use of hydrogen as a fuel for internal combustion engines", International Journal of Hydrogen Energy, 39(2), pp. 1071-1085. (2014). https://doi.org/10.1016/j.ijhydene.2013.10.102
  4. Wang, Y.-Z., Zhang, L., Xu, T. and Ding, K., "Influence of initial anolyte pH and temperature on hydrogen production through simultaneous saccharification and fermentation of lignocellulose in microbial electrolysis cell", International Journal of Hydrogen Energy, 42(36), pp. 22663-22670. (2017). https://doi.org/10.1016/j.ijhydene.2017.07.214
  5. Logan, B. E. amd Rabaey, K., "Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies", Science, 337(6095), pp. 686-690. (2012). https://doi.org/10.1126/science.1217412
  6. Lu, L., Xing, D., Liu, B. and Ren, N., "Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells", Water Research, 46(4), pp. 1015-1026. (2012). https://doi.org/10.1016/j.watres.2011.11.073
  7. Kadier, A., Simayi, Y., Abdeshahian, P., Azman, N. F., Chandrasekhar, K. and Kalil, M. S., "A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production", Alexandria Engineering Journal, 55(1), pp. 427-443. (2016). https://doi.org/10.1016/j.aej.2015.10.008
  8. Rozendal, R., Hamlelrs, H., Euverink, G., Metz, S. and Buisman, C., "Principle and perspectives of hydrogen production through biocatalyzed electrolysis", International Journal of Hydrogen Energy, 31(12), pp. 1632-1640. (2006). https://doi.org/10.1016/j.ijhydene.2005.12.006
  9. Logan, B. E., Call, D., Cheng, S., Hamelers, H. V. M., Sleutels, T. H. J. A., Jeremiasse, A. W. and Rozendal, R. A., "Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter", Environmental Science & Technology, 42(23), pp. 8630-8640. (2008). https://doi.org/10.1021/es801553z
  10. Park, C., Lee, C., Kim, S., Chen, Y. and Chase, H. A., "Upgrading of anaerobic digestion by incorporating two different hydrolysis processes", Journal of Bioscience and Bioengineering, 100(2), pp. 164-167. (2005). https://doi.org/10.1263/jbb.100.164
  11. Huang, W., Zhao, Z., Yuan, T., Huang, W., Lei, Z. and Zhang, Z., "Low-temperature hydrothermal pretreatment followed by dry anaerobic digestion: A sustainable strategy for manure waste management regarding energy recovery and nutrients availability", Waste Management, 70, pp. 255-262. (2017). https://doi.org/10.1016/j.wasman.2017.09.011
  12. Asztalos, J. R. and Kim, Y., "Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature", Water Research, 87, pp. 503-512. (2015). https://doi.org/10.1016/j.watres.2015.05.045
  13. Kumar, G., Bakonyi, P., Zhen, G., Sivagurunathan, P., Koók, L., Kim, S.-H. and Belafi-Bako, K., "Microbial electrochemical systems for sustainable biohydrogen production: Surveying the experiences from a start-up viewpoint", Renewable and Sustainable Energy Reviews, 70, pp. 589-597. (2017). https://doi.org/10.1016/j.rser.2016.11.107
  14. Cusick, R. D., Bryan, B., Parker, D. S., Merrill, M. D., Mehanna, M., Kiely, P. D. and Logan, B. E., "Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater", Applied Microbiology and Biotechnology, 89(6), pp. 2053-2063. (2011). https://doi.org/10.1007/s00253-011-3130-9
  15. Sim, J., Reid, R., Hussain, A., An, J. and Lee, H.-S., "Hydrogen peroxide production in a pilot-scale microbial electrolysis cell", Biotechnology Reports, 19, e00276. (2018). https://doi.org/10.1016/j.btre.2018.e00276
  16. Heidrich, E. S., Edwards, S. R., Dolfing, J., Cotterill, S. E. and Curtis, T. P., "Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period", Bioresource Technology, 173, pp. 87-95. (2014). https://doi.org/10.1016/j.biortech.2014.09.083
  17. Cho, S.-K., Lee, M.-E., Lee, W. and Ahn, Y., "Improved hydrogen recovery in microbial electrolysis cells using intermittent energy input", International Journal of Hydrogen Energy. (2018).
  18. Eaton, A. D., Franson, M. A. H., Association, A. P. H., Association, A. W. W. and Federation, W. E., "Standard methods for the examination of water & wastewater", American Public Health Association. (2005).
  19. Raynal, J., Delgen, J. P. and Moletta, R., "Twophase anaerobic digestion of solid waste by a multiple liquefaction reactors process", Bioresource Technology, 65(1-2), pp. 97-103. (1998). https://doi.org/10.1016/S0960-8524(98)00009-1
  20. McCarty, P. L., "Anaerobic waste treatment fundamentals, Part 1 : Chemistry and Microbiology", Public Works, Sept, pp. 107-112. (1964).
  21. Jeong, K. H., Kang, H., Jeong, J. H., Kim, S. W. and Ahn, H. W., "Biogas production from daily cow manure using semi-continuously fed and mixed reactor", J. of Korea Society of Waste Management, 31(8), pp. 843-853. (2014). https://doi.org/10.9786/kswm.2014.31.8.843
  22. Callaghan, F. J., Wase, D. A. J., Thayanithy, K.and Forster, C. F. "Co-digestion of waste organicsolids: batch studies" Bioresource Technol., 67, p.117. (1999). https://doi.org/10.1016/S0960-8524(98)00108-4