DOI QR코드

DOI QR Code

An Oxalic Acid Sensor Based on Platinum/Carbon Black-Nickel-Reduced Graphene Oxide Nanocomposites Modified Screen-Printed Carbon Electrode

  • Income, Kamolwich (Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi) ;
  • Ratnarathorn, Nalin (Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi) ;
  • Themsirimongkon, Suwaphid (Department of Chemistry, Faculty of Science, Chiang Mai University) ;
  • Dungchai, Wijitar (Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi)
  • Received : 2019.05.04
  • Accepted : 2019.07.28
  • Published : 2019.12.31

Abstract

A novel non-enzymatic oxalic acid (OA) sensor based on the platinum/carbon black-nickel-reduced graphene oxide (Pt/CBNi-rGO) nanocomposite is reported. The nanocomposites were prepared by the ethylene glycol reduction method. Their morphology and chemical composition were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results clearly demonstrated the formation of the Pt/CB-Ni-rGO nanocomposite. The electrocatalytic activity of the Pt/CB-Ni-rGO electrode was investigated by cyclic voltammetry. It was determined that the appropriate amount of Pt enhanced the catalytic activity of Pt for oxalic acid electro-oxidation. Moreover, the modified electrode was determined to be highly selective for oxalic acid without interference from compounds commonly found in urine including uric acid and ascorbic acid. The chronoamperometric signal gave a wide linearity range of 20 μM-60 mM and the detection limit (3σ) was found to be 2.35 μM. The proposed method showed high selectivity, stability, and good reproducibility and could be used with micro-volumes of sample for the detection of oxalic acid. Finally, the oxalic acid content in artificial and control urine samples were successfully determined by our proposed electrode.

Keywords

References

  1. A. Hogkinson, "Oxalic acid in biology and medicine", New York: Academic press, 1977, pp. 104-158.
  2. C.S. Pundir, N.K. Kuchhal, and M.S. Thakur, Indian J. Biochem. Biophys., 1998, 35(2), 120-122.
  3. C.S. Pundir, and M.S. Thaku, Clin. Chem., 1998, 44(6), 1364-1365. https://doi.org/10.1093/clinchem/44.6.1364
  4. D.L. Earnest, G. Johnson, H.E. Williams, and W.H. Admirand, Gastroenterol, 1974, 66(6), 1114-1122. https://doi.org/10.1016/S0016-5085(74)80003-X
  5. L. Yang, H. Jianshe, W. Dawei, H. Haoqing, and Y. Tianyan, Anal. Methods, 2010, 2(7), 855-859. https://doi.org/10.1039/c0ay00098a
  6. C. Fua, L.X. Wang, and Y.Z. Fang, Talanta, 1999, 50(5), 953-958. https://doi.org/10.1016/S0039-9140(99)00182-4
  7. D.R. Skotty, and T.A. Nieman, J. Chromatogr., 1995, 665(1), 27-36. https://doi.org/10.1016/0378-4347(94)00519-B
  8. A.A. Ensafi, and A. Kazemzadeh, Fresenius J. Anal. Chem., 2000, 367(6), 590-592. https://doi.org/10.1007/s002160000355
  9. A. Mokhtari, M. Keyvanfard, and I. Emami, RSC Adv, 2015, 5(37), 29214-29221. https://doi.org/10.1039/C5RA03034J
  10. S. Peldszus, P.M. Huck, and S.A. Andrews, J. Chromatogr. A, 1998, 793(1), 198-203. https://doi.org/10.1016/S0021-9673(97)00854-6
  11. E.F. Perez, G.O. Neto, and L.T. Kubota, Sens. Actuators, B, 2001, 72(1), 80-85. https://doi.org/10.1016/S0925-4005(00)00637-7
  12. Y.Y. Zhang, X.Y. Bai, X.M. Wang, K.K. Shiu, Y. Zhu, and H. Jiang, Anal. Chem., 2014, 86(19), 9459-9465. https://doi.org/10.1021/ac5009699
  13. Y.H. Fu, Y.P. Lin, T.S. Chen, and L.S. Wang, J. Electroanal. Chem., 2012, 687, 25-29. https://doi.org/10.1016/j.jelechem.2012.09.040
  14. T.A. Ivandini, T.N. Rao, A. Fujishima, and Y. Einaga, Anal. Chem., 2006, 78(10), 3467-3471. https://doi.org/10.1021/ac052029x
  15. Z. Yanqiong, Y. Changzhu, P. Wenhong, and Z. Jingdong, Food Chem., 2009, 114(4), 1523-1528. https://doi.org/10.1016/j.foodchem.2008.11.021
  16. C.M. Welch, and R.G. Compton, Anal. Bioanal. Chem., 2006, 384(3), 601-619. https://doi.org/10.1007/s00216-005-0230-3
  17. L.G. Shaidarova, and G.K. Budnikov, J. Anal. Chem., 2008, 63, 922-942. https://doi.org/10.1134/S106193480810002X
  18. M. Oyama, Anal. Sci., 2010, 26(1), 1-12. https://doi.org/10.2116/analsci.26.1
  19. M. J. Chollier-Brym, F. Epron, E. Lamy-Pitara, and J. Barbier, J. Electroanal. Chem., 1999, 474(2), 147-154. https://doi.org/10.1016/S0022-0728(99)00328-9
  20. S. N. Pron'kin, O. A. Petrii, G. A. Tsirlina, and D. J. Schiffrin, J. Electroanal. Chem., 2000, 480(1-2), 112-119. https://doi.org/10.1016/S0022-0728(99)00454-4
  21. L. C. Rockombeny, J. P. Feraud, B. Queffelec, D. Ode, and T. Tzedakis, Electrochim. Acta, 2012, 66, 230-238. https://doi.org/10.1016/j.electacta.2012.01.080
  22. H. J. Wang, M. Imura, Y. Nemoto, S. E. Park, and Y. Yamauchi, Chem. Asian J., 2012, 7(4), 802-808. https://doi.org/10.1002/asia.201100949
  23. J. Y. Shin, Y. S. Kim, Y. Lee, J. H. Shim, C. Lee, and S. G. Lee, Chem. Asian J., 2011, 6(8), 2016-2021. https://doi.org/10.1002/asia.201100094
  24. S. J. Guo, D. Wen, Y. M. Zhai, S. J. Dong, and E. K. Wang, ACS Nano, 2010, 4(7), 3959-3968. https://doi.org/10.1021/nn100852h
  25. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, and I. Honma, Nano Lett., 2009, 9(6), 2255-2259. https://doi.org/10.1021/nl900397t
  26. A. Iwan, M. Malinowski, and G. Pasciak, Renew. Sustain. Energy Rev., 2015, 49, 954-967. https://doi.org/10.1016/j.rser.2015.04.093
  27. N. Seselj, C. Engelbrekt, and J. Zhang, Sci. Bull., 2015, 60(9), 864-876. https://doi.org/10.1007/s11434-015-0745-8
  28. E. Quesnel, F. Roux, F. Emieux, P. Faucherand, E. Kymakis, G. Volonakis, F.Giustino, B. Martin-Garia, I. Moreels, and S.A. Gursel, 2D Mater., 2015, 2(30204), 1-16.
  29. A. Marinkas, F. Arena, J. Mitzel, G.M. Prinz, A. Heinzel, V. Peinecke, and H. Natter, Carbon, 2013, 58, 139-150. https://doi.org/10.1016/j.carbon.2013.02.043
  30. S. Park, Y. Shao, H. Wan, P.C. Rieke, V.V. Viswanathan, S.A. Towne, L.V. Saraf, W.J. Liu, Y. Lin, and Y. Wang, Electrochem. Commun., 2011, 13(3), 258-261. https://doi.org/10.1016/j.elecom.2010.12.028
  31. K. Income, N. Ratnarathorn, N. Khamchaiyo, C. Srisuvo, L. Ruckthong, and W. Dungchai, Int. J. Anal. Chem., 2019, 1-11.
  32. S. Chutipongtanate, and V. Thongboonkerd, Anal. Biochem., 2010, 402(1), 110-112. https://doi.org/10.1016/j.ab.2010.03.031
  33. A.J. Bard, and L.R. Faulkner, "Fundamentals and Applications: Electrochemical Methods", Wiley, New York, 2001.
  34. C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Palichta, and M.A. Hendrickson, J. Phys. Chem. C, 2009, 113(46), 20127-20134. https://doi.org/10.1021/jp908090s
  35. R.B. Keithley, P. Takmakov, E.S. Bucher, A.M. Belle, C.A. Owesson-White, J. Park, and R.M. Wightman, Anal. Chem., 2011, 83(9), 3563-3571. https://doi.org/10.1021/ac200143v
  36. X. Cao, X. Cai, Q. Feng, S. Jia, and N. Wang, Anal. Chim. Acta, 2012, 752, 101-105. https://doi.org/10.1016/j.aca.2012.09.034
  37. G.W. Latimer, "Guidelines for Standard Method Performance Requirements: Official Methods of Analysis", 20th ed, United States: AOAC International, 2016, pp. 1-7.
  38. T. A. Ivandini, T. N. Rao, A. Fujishima, and Y. Einaga, Anal. Chem., 2006, 78(10), 3467-3471. https://doi.org/10.1021/ac052029x
  39. T. C. Canevari, J. Arguello, M. S. P. Francisco, and Y. Gushikem, J. Electroanal. Chem., 2007, 609(2), 61-67. https://doi.org/10.1016/j.jelechem.2007.06.006
  40. F. Manea, C. Radovan, I. Corb, A. Pop, G. Burtica, P. Malchev, S. Picken, and J. Schoonman, Sensors, 2007, 7(4), 615-627. https://doi.org/10.3390/s7040615
  41. H. Ahmar, A. R. Fakhari, M. R. Nabid, S. J. T. Rezaei, and Y. Bide, Sens. Actuators B Chem., 2012, 171, 611-618.
  42. A. R. Fakhari, B. Rafiee, H. Ahmar, and A. Bagheri, Anal. Methods, 2012, 4(10), 3314-3319. https://doi.org/10.1039/c2ay25077b
  43. S. Lei, Z. Faqiong, and Z. Baizhao, Electroanalysis, 2013, 25(2), 453-459. https://doi.org/10.1002/elan.201200540
  44. C. Xiaomei, C. Zhixiong, H. Zhiyong, O. Munetaka, J. Yaqi, and C. Xi, Nanoscale, 2013, 5(13), 5779-5783. https://doi.org/10.1039/c3nr00848g
  45. T. Maiyalagan, P. Kannan, M. J. Niedziolka, and J. N. Jonsson, Anal. Chem., 2014, 86(15), 7849-7857. https://doi.org/10.1021/ac501768m
  46. J. B. Raoof, F. Chekin, and V. Ehsani, Sens. Actuators B Chem., 2015, 207, 291-296. https://doi.org/10.1016/j.snb.2014.10.064
  47. W. Xiaofeng, C. Yong, Y. Zheng, S. Hailiang, G. Shixing, L. Jun, and S. Wei, Ionics., 2015, 21(3), 877-884. https://doi.org/10.1007/s11581-014-1233-x
  48. L. Dandan, W. Yaoxian, and Z. Ganqing, Int. J. Electrochem. Sci., 2015, 10, 6794-6802.
  49. M. Le, Z. Qiang, Z. Min, W. Lishi, and C. Faliang, J. Exp. Nanosci., 2016, 11(16), 1242-1252. https://doi.org/10.1080/17458080.2016.1209586