DOI QR코드

DOI QR Code

Immunosensors for Food Safety: Current Trends and Future Perspectives

  • Daliri, Frank (Department of Agriculture Biotechnology, Kwame Nkrumah University of Science and Technology) ;
  • Aboagye, Agnes Achiaa (Root and Tuber Division, Council for Scientific and Industrial Research-Crops Research Institute) ;
  • Kyei-Baffour, Vincent (Toxicology Unit, Department of Chemistry, Council for Scientific and Industrial Research- Food Research Institute) ;
  • Elahi, Fazle (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Chelliah, Ramachandran (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Daliri, Eric Banan-Mwine (Department of Food Science and Biotechnology, Kangwon National University)
  • Received : 2019.12.06
  • Accepted : 2019.12.21
  • Published : 2019.12.30

Abstract

To monitor the levels of antimicrobials, allergens, pathogens and other contaminants in foods meant for human consumption, it is imperative to have quick, accurate and low-cost tests. Advanced techniques (e.g. label-free biosensor assays) have been developed over the past 10-15 years to solve some of these problems. As biosensors, immunosensors can provide real-time measurements, a high degree of automation, and improved throughput and sensitivity. By comparison with conventional methods, immunosensors are less expensive, less sophisticated physicochemical instruments that require less time for analysis while also being more user-friendly. In this review, we discuss our current knowledge about immunosensors, their strengths and weaknesses, as well as the future of these biosensors in food safety.

사람이 섭취하는 식품 내의 항생제, 알레르기 유발 물질, 병원균 및 기타 오염물질의 수준을 모니터링하기 위해서는, 빠르고 정확하며 저렴한 비용으로 테스트 해야 한다. 이러한 문제 중 일부를 해결하기 위해 지난 10-15년 동안 진보된 기술(label-free biosensor assays)이 개발되어 왔다. 이 면역감지키트들은 실시간 측정이 가능하고, 높은 수준의 자동화를 제공하며, 향상된 처리율과 민감도를 가지고 있다. 또한, 기존의 방법과 비교하여 가격이 저렴하고, 덜 복잡하며, 분석 시간을 단축시켜주는 사용자 친화적 키트이다. 이 리뷰에서는 면역감지키트의 장단점, 그리고 미래의 식품안전검사에서의 사용성에 관한 것에 대해 논의해 볼 것이다.

Keywords

References

  1. Ricci, F., Volpe, G., Micheli, L., & Palleschi, G., A review on novel developments and applications of immunosensors in food analysis. Anal. Chim. Acta, 605(2), 111-129 (2007). https://doi.org/10.1016/j.aca.2007.10.046
  2. Kara, V., Duan, C., Gupta, K., Kurosawa, S., Stearns-Kurosawa, D. J., & Ekinci, K. L., Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing. Lab on a Chip, 18(5), 743-753 (2018). https://doi.org/10.1039/C7LC01019B
  3. Mehrotra, P., Biosensors and their applications-A review. J Oral Biol Craniofac Res., 6(2), 153-159 (2016). https://doi.org/10.1016/j.jobcr.2015.12.002
  4. Hashemi Goradel, N., Mirzaei, H., Sahebkar, A., Poursadeghiyan, M., Masoudifar, A., Malekshahi, Z. V., Negahdari, B., Biosensors for the detection of environmental and urban pollutions. J. Cell. Biochem., 119(1), 207-212 (2018) https://doi.org/10.1002/jcb.26030
  5. Li, Z., Chen, G.-Y., Current conjugation methods for immunosensors. Nanomaterials, 8(5), 278 (2018) https://doi.org/10.3390/nano8050278
  6. Balahura, L.-R., Stefan-Van Staden, R.-I., Van Staden, J. F., Aboul-Enein, H. Y., Advances in immunosensors for clinical applications. J Immunoassay Immunochem., 40(1), 40-51 (2019). https://doi.org/10.1080/15321819.2018.1543704
  7. Azam, M.S., Rahman, M.R.T., Lou, Z., Tang, Y., Raqib, S.M., Jothi, J.S., Advancements and application of immunosensors in the analysis of food contaminants. Nus Biosci., 6(2) (2014). https://doi.org/10.13057/nusbiosci/n060210
  8. Altunbas, O., Ozdas, A., Yilmaz, M.D., Luminescent detection of Ochratoxin A using terbium chelated mesoporous silica nanoparticles. J Hazard Mater., 382, 121049 (2020). https://doi.org/10.1016/j.jhazmat.2019.121049
  9. Pu, Y., Cai, F., Wang, D., Wang, J.-X., Chen, J.-F., Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind Eng Chem Res., 57(6), 1790-1802 (2018). https://doi.org/10.1021/acs.iecr.7b04836
  10. Jimenez-Lopez, J., Rodrigues, S., Ribeiro, D., Ortega-Barrales, P., Ruiz-Medina, A., Santos, J., Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochim Acta A Mol Biomol. Spectrosc., 212, 246-254 (2019). https://doi.org/10.1016/j.saa.2019.01.005
  11. Algar, W.R., Tavares, A.J., Krull, U.J., Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta., 673(1), 1-25 (2010). https://doi.org/10.1016/j.aca.2010.05.026
  12. Bai, L., Yan, H., Feng, Y., Feng, W., Yuan, L., Multi-excitation and single color emission carbon dots doped with silicon and nitrogen: Synthesis, emission mechanism, $Fe^{3+}$ probe and cell imaging. Chem Eng J., 373, 963-972 (2019). https://doi.org/10.1016/j.cej.2019.05.103
  13. Ghasemi, F., Hormozi-Nezhad, M.R., Mahmoudi, M., A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg (II). Sens Actuators B Chem., 259, 894-899 (2018). https://doi.org/10.1016/j.snb.2017.12.141
  14. Kukkar, M., Tuteja, S.K., Kumar, P., Kim, K.-H., Bhadwal, A. S., Deep, A., A novel approach for amine derivatization of MoS2 nanosheets and their application toward label-free immunosensor. Anal. Biochem., 555, 1-8 (2018). https://doi.org/10.1016/j.ab.2018.05.029
  15. Carrillo-Carrion, C., Simonet, B.M., Valcarcel, M., Rapid fluorescence determination of diquat herbicide in food grains using quantum dots as new reducing agent. Anal Chim Acta., 692(1-2), 103-108 (2011). https://doi.org/10.1016/j.aca.2011.03.003
  16. Liu, J., Zhao, X., Xu, H., Wang, Z., Dai, Z., Amino acidscapped water-soluble near infrared region CuInS2/ZnS Quantum Dots for selective cadmium ion determination and multicolor cell imaging. Anal. Chem. 91(14), 8987-8993 (2019). https://doi.org/10.1021/acs.analchem.9b01183
  17. Pissuwan, D., Gazzana, C., Mongkolsuk, S., Cortie, M.B., Single and multiple detections of foodborne pathogens by gold nanoparticle assays. Nanomed Nanobi., e1584 (2019).
  18. Al-Hadedee, L.T., Taha, A.A., Al-Mosowy, A.J., Suleiman, A.A., Detection and killing of food poisoning Salmonella typhimurium in cheese by using monoclonal antibody and nanoparticles complex. RRJoFST., 5(1), 1-10 (2018).
  19. Wang, L., Xu, L., Kuang, H., Xu, C., Kotov, N.A., Dynamic nanoparticle assemblies. Acc. Chem. Res., 45(11), 1916-1926 (2012). https://doi.org/10.1021/ar200305f
  20. Gonzalez-Curbelo, M.A., Herrera-Herrera, A.V., Ravelo-Perez, L.M., Hernandez-Borges, J., Sample-preparation methods for pesticide-residue analysis in cereals and derivatives. Trac Trend Anal Chem., 38, 32-51 (2012). https://doi.org/10.1016/j.trac.2012.04.010
  21. Prasad, P.N., 2004, Introduction to biophotonics. John Wiley & Sons. Hoboken. US.
  22. Valadez, A., Lana, C., Tu, S.-I., Morgan, M., Bhunia, A., Evanescent wave fiber optic biosensor for Salmonella detection in food. Sensors, 9(7), 5810-5824 (2009). https://doi.org/10.3390/s90705810
  23. Tang, M., Wu, Y., Deng, D., Wei, J., Zhang, J., Yang, D., Li, G., Development of an optical fiber immunosensor for the rapid and sensitive detection of phthalate esters. Sensor Actuat B-Chem., 258, 304-312 (2018). https://doi.org/10.1016/j.snb.2017.11.120
  24. Lopes, R.N., Rodrigues, D.M., Allil, R.C., Werneck, M.M., Plastic optical fiber immunosensor for fast detection of sulfate-reducing bacteria. Measurement, 125, 377-385 (2018). https://doi.org/10.1016/j.measurement.2018.04.088
  25. Vargas-Bernal, R., Rodriguez-Miranda, E., Herrera-Perez, G., Evolution and expectations of enzymatic biosensors for pesticides In: Pesticides-Advances in Chemical and Botanical Pesticides. InTechOpen., Ed. Soundararajan R.P. United Kingdom (2012).
  26. Long, F., Gao, C., Shi, H., He, M., Zhu, A., Klibanov, A., Gu, A., Reusable evanescent wave DNA biosensor for rapid, highly sensitive, and selective detection of mercury ions. Biosens. Bioelectron., 26(10), 4018-4023 (2011). https://doi.org/10.1016/j.bios.2011.03.022
  27. Dubey, R., Upadhyay, S., Microbial corrosion monitoring by an amperometric microbial biosensor developed using whole cell of Pseudomonas sp. Biosens. Bioelectron., 16(9-12), 995-1000 (2001). https://doi.org/10.1016/S0956-5663(01)00203-2
  28. Gandhi, M., Chu, S., Senthilnathan, K., Babu, P.R., Nakkeeran, K., Li, Q., Recent advances in plasmonic sensorbased fiber optic probes for biological applications. Applied Sciences, 9(5), 949 (2019). https://doi.org/10.3390/app9050949
  29. Banica, F.G., 2012 Chemical sensors and biosensors: fundamentals and applications. John Wiley & Sons. United Kingdom.
  30. Liu, X., Hu, Y., Zheng, S., Liu, Y., He, Z. and Luo, F., Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticlesenriched Salmonella enteritidis. Sens. Actuators B Chem., 230, 191-198 (2016). https://doi.org/10.1016/j.snb.2016.02.043
  31. Tomassetti, M., Conta, G., Campanella, L., Favero, G., Sanzo, G., Mazzei, F. and Antiochia, R., A flow SPR immunosensor based on a sandwich direct method. Biosensors, 6(2), 22 (2016). https://doi.org/10.3390/bios6020022
  32. Makaraviciute, A., Ramanavicius, A. and Ramanaviciene, A., Development of a reusable protein G based SPR immunosensor for direct human growth hormone detection in real samples. Anal. Methods, 7(23), 9875-9884 (2015). https://doi.org/10.1039/C5AY01651G
  33. Nirschl, M., Reuter, F., Voros, J., Review of transducer principles for label-free biomolecular interaction analysis. Biosensors., 1(3), 70-92 (2011). https://doi.org/10.3390/bios1030070
  34. Piro, B., Reisberg, S., Recent advances in electrochemical immunosensors. Sensors, 17(4), 794 (2017). https://doi.org/10.3390/s17040794
  35. Campana, A.L., Florez, S.L., Noguera, M.J., Fuentes, O.P., Ruiz Puentes, P., Cruz, J.C., Osma, J.F., Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater. Biosensors, 9(1), 41(2019). https://doi.org/10.3390/bios9010041
  36. Dziabowska, K., Czaczyk, E., Nidzworski, D., Application of electrochemical methods in biosensing technologies. In Biosensing technologies for the detection of pathogens-A prospective way for rapid analysis, IntechOpen, (2017).
  37. Upadhyay, S., Sharma, M.K., Das, R., Narayanan, J., Application of nanomaterials in biosensing for foodborne pathogens detection. J. Food Bioeng. Nanop., 1(1), 32-55 (2016).
  38. Silva, N.F., Almeida, C.M., Magalhaes, J.M., Goncalves, M.P., Freire, C., Delerue-Matos, C., Development of a disposable paper-based potentiometric immunosensor for realtime detection of a foodborne pathogen. Biosens. Bioelectron., 111317 (2019).
  39. Li, Q., Lv, S., Lu, M., Lin, Z., & Tang, D., Potentiometric competitive immunoassay for determination of aflatoxin B 1 in food by using antibody-labeled gold nanoparticles. Microchimica Acta, 183(10), 2815-2822. (2016). https://doi.org/10.1007/s00604-016-1929-x
  40. Rubab, M., Shahbaz, H.M., Olaimat, A.N., Oh, D.-H., Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosens. Bioelectron., 105, 49-57 (2018). https://doi.org/10.1016/j.bios.2018.01.023
  41. Kumar, V., Kumar, V., Singh, A.K., Verma, N., Bhalla, T.C., A Potentiometric biosensor for cyanide detection using immobilized whole cell cyanide dihydratase of Flavobacterium indicum MTCC 6936. J. Anal. Chem, 73(10), 1014-1019 (2018). https://doi.org/10.1134/S1061934818100039
  42. Dutta, S., Padhye, S., Narayanaswamy, R., Persaud, K., An optical biosensor employing tiron-immobilised polypyrrole films for estimating monophenolase activity in apple juice. Biosens. Bioelectron., 16(4-5), 287-294 (2001). https://doi.org/10.1016/S0956-5663(01)00136-1
  43. Rotariu, L., Bala, C., Magearu, V., Yeast cells sucrose biosensor based on a potentiometric oxygen electrode. Anal. Chim., 458(1), 215-222 (2002). https://doi.org/10.1016/S0003-2670(01)01529-X
  44. Kim, M., Kim, M.-J., Isocitrate analysis using a potentiometric biosensor with immobilized enzyme in a FIA system. Food Res Int., 36(3), 223-230 (2003). https://doi.org/10.1016/S0963-9969(02)00140-0
  45. Stepurska, K., Soldatkin, О., Kucherenko, I., Arkhypova, V., Dzyadevych, S., Soldatkin, A., Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Anal. Chim. Acta., 854, 161-168 (2015). https://doi.org/10.1016/j.aca.2014.11.027
  46. Soldatkin, O.O., Stepurska, K., Arkhypova, V., Soldatkin, A., El'Skaya, A., Lagarde, F., Dzyadevych, S., Conductometric enzyme biosensor for patulin determination. Sens Actuators B Chem., 239, 1010-1015 (2017). https://doi.org/10.1016/j.snb.2016.08.121
  47. Dudchenko, O.Y., Pyeshkova, V.M., Soldatkin, O.O., Akata, B., Kasap, B.O., Soldatkin, A.P., Dzyadevych, S.V., Development of silicalite/glucose oxidase-based biosensor and its application for glucose determination in juices and nectars. Nanoscale Res. Lett., 11(1), 59 (2016). https://doi.org/10.1186/s11671-016-1275-2
  48. Adley, C., Ryan, M., 2015, Conductometric biosensors for high throughput screening of pathogens in food. In high throughput screening for food safety assessment, Elsevier. pp 315-326.
  49. Pilo, M., Farre, R., Lachowicz, J.I., Masolo, E., Panzanelli, A., Sanna, G., Senes, N., Sobral, A., Spano, N., Design of amperometric biosensors for the detection of glucose prepared by immobilization of glucose oxidase on conducting (poly) thiophene films. J. Anal. Methods, 2018, (2018).
  50. Contreras-Naranjo, J.E., Aguilar, O., Suppressing non-specific binding of proteins onto electrode surfaces in the development of electrochemical immunosensors. Biosensors, 9(1), 15 (2019). https://doi.org/10.3390/bios9010015
  51. Sandford, C., Edwards, M.A., Klunder, K., Hickey, D.P., Li, M., Barman, K., Sigman, M.S., White, H.S., Minteer, S., A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chem. Sci., 6404-6422 (2019).
  52. Shkotova, L., Goriushkina, T., Tran-Minh, C., Chovelon, J.-M., Soldatkin, A., Dzyadevych, S., Amperometric biosensor for lactate analysis in wine and must during fermentation. Mater. Sci. Eng. C, 28(5-6), 943-948 (2008). https://doi.org/10.1016/j.msec.2007.10.038
  53. Goriushkina, T.B., Soldatkin, A.P., Dzyadevych, S.V., Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine. J. Agric. Food Chem., 57(15), 6528-6535 (2009). https://doi.org/10.1021/jf9009087
  54. Fogel, R., Limson, J., Seshia, A.A., Acoustic biosensors. Essays Biochem., 60(1), 101-110 (2016). https://doi.org/10.1042/EBC20150011
  55. Gupta, M., Summuna, B., Gupta, S., Sharma, D., Biosensor based techniques: A reliable and primary tool for detection of foodborne pathogens. Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability. Ed(s). El Sheikha A., F., Levin R. E., Xu, J. Willey. USA, 361 (2018).
  56. Pohanka, M., Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials, 11(3), 448 (2018). https://doi.org/10.3390/ma11030448
  57. Chauhan, R., Solanki, P.R., Singh, J., Mukherjee, I., Basu, T., Malhotra, B., A novel electrochemical piezoelectric label free immunosensor for aflatoxin B1 detection in groundnut. Food Control, 52, 60-70 (2015). https://doi.org/10.1016/j.foodcont.2014.12.009
  58. Chauhan, R., Singh, J., Solanki, P.R., Basu, T., O'Kennedy, R., Malhotra, B., Electrochemical piezoelectric reusable immunosensor for aflatoxin B1 detection. Biochem. Eng. J, 103, 103-113 (2015). https://doi.org/10.1016/j.bej.2015.07.002
  59. Yun, Y., Pan, M., Wang, L., Li, S., Wang, Y., Gu, Y., Yang, J., Wang, S., Fabrication and evaluation of a label-free piezoelectric immunosensor for sensitive and selective detection of amantadine in foods of animal origin. Anal. Bioanal. Chem, 1-9 (2019).
  60. Melo, A.M.A., Alexandre, D.L., Furtado, R.F., Borges, M.F., Figueiredo, E.A.T., Biswas, A., Cheng, H.N., Alves, C.R., Electrochemical immunosensors for Salmonella detection in food. Appl Microbiol Biotechnol, 100(12), 5301-5312 (2016). https://doi.org/10.1007/s00253-016-7548-y
  61. Wang, H., Wang, L., Hu, Q., Wang, R., Li, Y., Kidd, M., Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. J. Food Prot., 81(8), 1321-1330 (2018). https://doi.org/10.4315/0362-028X.JFP-17-381
  62. Radhakrishnan, R., Poltronieri, P., Fluorescence-free biosensor methods in detection of food pathogens with a special focus on Listeria monocytogenes. Biosensors, 7(4) pii: E63 (2017).
  63. Yu, X., Chen, F., Wang, R., Li, Y., Whole-bacterium SELEX of DNA aptamers for rapid detection of E. coli O157: H7 using a QCM sensor. J. Biotechnol., 266, 39-49 (2018). https://doi.org/10.1016/j.jbiotec.2017.12.011
  64. Wong, Y., Ng, S., Ng, M., Si, S., Yao, S., Fung, Y., Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. Biosens. Bioelectron, 17(8), 676-684 (2002). https://doi.org/10.1016/S0956-5663(02)00030-1
  65. Karaseva, N., Ermolaeva, T., A piezoelectric immunosensor for chloramphenicol detection in food. Talanta, 93, 44-48 (2012). https://doi.org/10.1016/j.talanta.2011.12.047
  66. Ding, J., Lu, Z., Wang, R., Shen, G., Xiao, L., Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for 2, 4-dichlorophenoxyacetic acid quantification. Sensor Actuat B-Chem. 193, 568-573 (2014). https://doi.org/10.1016/j.snb.2013.11.079
  67. Vashist, S.K., A review of microcantilevers for sensing applications. J. of Nanotechnology, 3, 1-18 (2007).
  68. Flores-Perez, R., Gupta, A.K., Bashir, R., Ivanisevic, A., Cantilever-based sensor for the detection of different chromophore isomers. Anal. Chem., 79(12), 4702-4708 (2007). https://doi.org/10.1021/ac0703000
  69. Wu, W.-H., Zhu, K.-D., Proposition of a silica nanoparticleenhanced hybrid spin-microcantilever sensor using nonlinear optics for detection of DNA in liquid. Sensors, 15(10), 24848-24861 (2015). https://doi.org/10.3390/s151024848
  70. Khemthongcharoen, N., Wonglumsom, W., Suppat, A., Jaruwongrungsee, K., Tuantranont, A., Promptmas, C., Piezoresistive microcantilever-based DNA sensor for sensitive detection of pathogenic Vibrio cholerae O1 in food sample. Biosens. Bioelectron., 63, 347-353 (2015). https://doi.org/10.1016/j.bios.2014.07.068
  71. Nallathambi, A., Shanmuganantham, T., A cantilever based MEMS sensor for detection of greenhouse gases. Int. J. Eng. Res, (2), 16-21 (2015).
  72. Rotake, D., Darji, A., Heavy metal ion detection in water using MEMS based sensor. Materials Today: Proceedings, 5(1), 1530-1536 (2018). https://doi.org/10.1016/j.matpr.2017.11.242
  73. Ilic, B., Yang, Y., Aubin, K., Reichenbach, R., Krylov, S., Craighead, H., Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Letters, 5(5), 925-929 (2005). https://doi.org/10.1021/nl050456k
  74. Bao, Y., Xu, P., Cai, S., Yu, H., Li, X., Detection of volatileorganic-compounds (VOCs) in solution using cantileverbased gas sensors. Talanta, 182, 148-155 (2018). https://doi.org/10.1016/j.talanta.2018.01.086
  75. Lang, H.P., Hegner, M., Gerber, C., 2017, Nanomechanical cantilever array sensors. In Springer Handbook of Nanotechnology, Springer. Columbus. USA. pp 457-485.
  76. Alim, S., Vejayan, J., Yusoff, M.M., Kafi, A., Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: a review. Biosens. Bioelectron., 121, 125-136 (2018). https://doi.org/10.1016/j.bios.2018.08.051
  77. Cheng, N., Song, Y., Zeinhom, M.M., Chang, Y.-C., Sheng, L., Li, H., Du, D., Li, L., Zhu, M.-J., Luo, Y., Nanozymemediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces, 9(46), 40671-40680 (2017). https://doi.org/10.1021/acsami.7b12734
  78. Lu, Y., Shi, Z., Liu, Q., Smartphone-based biosensors for portable food evaluation. Curr Opin Food Sci., 28, 74-81 (2019). https://doi.org/10.1016/j.cofs.2019.09.003
  79. Lin, H.-Y., Huang, C.-H., Park, J., Pathania, D., Castro, C. M., Fasano, A., Weissleder, R., Lee, H., Integrated magnetochemical sensor for on-site food allergen detection. ACS nano., 11(10), 10062-10069 (2017). https://doi.org/10.1021/acsnano.7b04318