References
- Ricci, F., Volpe, G., Micheli, L., & Palleschi, G., A review on novel developments and applications of immunosensors in food analysis. Anal. Chim. Acta, 605(2), 111-129 (2007). https://doi.org/10.1016/j.aca.2007.10.046
- Kara, V., Duan, C., Gupta, K., Kurosawa, S., Stearns-Kurosawa, D. J., & Ekinci, K. L., Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing. Lab on a Chip, 18(5), 743-753 (2018). https://doi.org/10.1039/C7LC01019B
- Mehrotra, P., Biosensors and their applications-A review. J Oral Biol Craniofac Res., 6(2), 153-159 (2016). https://doi.org/10.1016/j.jobcr.2015.12.002
- Hashemi Goradel, N., Mirzaei, H., Sahebkar, A., Poursadeghiyan, M., Masoudifar, A., Malekshahi, Z. V., Negahdari, B., Biosensors for the detection of environmental and urban pollutions. J. Cell. Biochem., 119(1), 207-212 (2018) https://doi.org/10.1002/jcb.26030
- Li, Z., Chen, G.-Y., Current conjugation methods for immunosensors. Nanomaterials, 8(5), 278 (2018) https://doi.org/10.3390/nano8050278
- Balahura, L.-R., Stefan-Van Staden, R.-I., Van Staden, J. F., Aboul-Enein, H. Y., Advances in immunosensors for clinical applications. J Immunoassay Immunochem., 40(1), 40-51 (2019). https://doi.org/10.1080/15321819.2018.1543704
- Azam, M.S., Rahman, M.R.T., Lou, Z., Tang, Y., Raqib, S.M., Jothi, J.S., Advancements and application of immunosensors in the analysis of food contaminants. Nus Biosci., 6(2) (2014). https://doi.org/10.13057/nusbiosci/n060210
- Altunbas, O., Ozdas, A., Yilmaz, M.D., Luminescent detection of Ochratoxin A using terbium chelated mesoporous silica nanoparticles. J Hazard Mater., 382, 121049 (2020). https://doi.org/10.1016/j.jhazmat.2019.121049
- Pu, Y., Cai, F., Wang, D., Wang, J.-X., Chen, J.-F., Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review. Ind Eng Chem Res., 57(6), 1790-1802 (2018). https://doi.org/10.1021/acs.iecr.7b04836
- Jimenez-Lopez, J., Rodrigues, S., Ribeiro, D., Ortega-Barrales, P., Ruiz-Medina, A., Santos, J., Exploiting the fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles for the determination of bioactive thiols. Spectrochim Acta A Mol Biomol. Spectrosc., 212, 246-254 (2019). https://doi.org/10.1016/j.saa.2019.01.005
- Algar, W.R., Tavares, A.J., Krull, U.J., Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta., 673(1), 1-25 (2010). https://doi.org/10.1016/j.aca.2010.05.026
-
Bai, L., Yan, H., Feng, Y., Feng, W., Yuan, L., Multi-excitation and single color emission carbon dots doped with silicon and nitrogen: Synthesis, emission mechanism,
$Fe^{3+}$ probe and cell imaging. Chem Eng J., 373, 963-972 (2019). https://doi.org/10.1016/j.cej.2019.05.103 - Ghasemi, F., Hormozi-Nezhad, M.R., Mahmoudi, M., A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg (II). Sens Actuators B Chem., 259, 894-899 (2018). https://doi.org/10.1016/j.snb.2017.12.141
- Kukkar, M., Tuteja, S.K., Kumar, P., Kim, K.-H., Bhadwal, A. S., Deep, A., A novel approach for amine derivatization of MoS2 nanosheets and their application toward label-free immunosensor. Anal. Biochem., 555, 1-8 (2018). https://doi.org/10.1016/j.ab.2018.05.029
- Carrillo-Carrion, C., Simonet, B.M., Valcarcel, M., Rapid fluorescence determination of diquat herbicide in food grains using quantum dots as new reducing agent. Anal Chim Acta., 692(1-2), 103-108 (2011). https://doi.org/10.1016/j.aca.2011.03.003
- Liu, J., Zhao, X., Xu, H., Wang, Z., Dai, Z., Amino acidscapped water-soluble near infrared region CuInS2/ZnS Quantum Dots for selective cadmium ion determination and multicolor cell imaging. Anal. Chem. 91(14), 8987-8993 (2019). https://doi.org/10.1021/acs.analchem.9b01183
- Pissuwan, D., Gazzana, C., Mongkolsuk, S., Cortie, M.B., Single and multiple detections of foodborne pathogens by gold nanoparticle assays. Nanomed Nanobi., e1584 (2019).
- Al-Hadedee, L.T., Taha, A.A., Al-Mosowy, A.J., Suleiman, A.A., Detection and killing of food poisoning Salmonella typhimurium in cheese by using monoclonal antibody and nanoparticles complex. RRJoFST., 5(1), 1-10 (2018).
- Wang, L., Xu, L., Kuang, H., Xu, C., Kotov, N.A., Dynamic nanoparticle assemblies. Acc. Chem. Res., 45(11), 1916-1926 (2012). https://doi.org/10.1021/ar200305f
- Gonzalez-Curbelo, M.A., Herrera-Herrera, A.V., Ravelo-Perez, L.M., Hernandez-Borges, J., Sample-preparation methods for pesticide-residue analysis in cereals and derivatives. Trac Trend Anal Chem., 38, 32-51 (2012). https://doi.org/10.1016/j.trac.2012.04.010
- Prasad, P.N., 2004, Introduction to biophotonics. John Wiley & Sons. Hoboken. US.
- Valadez, A., Lana, C., Tu, S.-I., Morgan, M., Bhunia, A., Evanescent wave fiber optic biosensor for Salmonella detection in food. Sensors, 9(7), 5810-5824 (2009). https://doi.org/10.3390/s90705810
- Tang, M., Wu, Y., Deng, D., Wei, J., Zhang, J., Yang, D., Li, G., Development of an optical fiber immunosensor for the rapid and sensitive detection of phthalate esters. Sensor Actuat B-Chem., 258, 304-312 (2018). https://doi.org/10.1016/j.snb.2017.11.120
- Lopes, R.N., Rodrigues, D.M., Allil, R.C., Werneck, M.M., Plastic optical fiber immunosensor for fast detection of sulfate-reducing bacteria. Measurement, 125, 377-385 (2018). https://doi.org/10.1016/j.measurement.2018.04.088
- Vargas-Bernal, R., Rodriguez-Miranda, E., Herrera-Perez, G., Evolution and expectations of enzymatic biosensors for pesticides In: Pesticides-Advances in Chemical and Botanical Pesticides. InTechOpen., Ed. Soundararajan R.P. United Kingdom (2012).
- Long, F., Gao, C., Shi, H., He, M., Zhu, A., Klibanov, A., Gu, A., Reusable evanescent wave DNA biosensor for rapid, highly sensitive, and selective detection of mercury ions. Biosens. Bioelectron., 26(10), 4018-4023 (2011). https://doi.org/10.1016/j.bios.2011.03.022
- Dubey, R., Upadhyay, S., Microbial corrosion monitoring by an amperometric microbial biosensor developed using whole cell of Pseudomonas sp. Biosens. Bioelectron., 16(9-12), 995-1000 (2001). https://doi.org/10.1016/S0956-5663(01)00203-2
- Gandhi, M., Chu, S., Senthilnathan, K., Babu, P.R., Nakkeeran, K., Li, Q., Recent advances in plasmonic sensorbased fiber optic probes for biological applications. Applied Sciences, 9(5), 949 (2019). https://doi.org/10.3390/app9050949
- Banica, F.G., 2012 Chemical sensors and biosensors: fundamentals and applications. John Wiley & Sons. United Kingdom.
- Liu, X., Hu, Y., Zheng, S., Liu, Y., He, Z. and Luo, F., Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticlesenriched Salmonella enteritidis. Sens. Actuators B Chem., 230, 191-198 (2016). https://doi.org/10.1016/j.snb.2016.02.043
- Tomassetti, M., Conta, G., Campanella, L., Favero, G., Sanzo, G., Mazzei, F. and Antiochia, R., A flow SPR immunosensor based on a sandwich direct method. Biosensors, 6(2), 22 (2016). https://doi.org/10.3390/bios6020022
- Makaraviciute, A., Ramanavicius, A. and Ramanaviciene, A., Development of a reusable protein G based SPR immunosensor for direct human growth hormone detection in real samples. Anal. Methods, 7(23), 9875-9884 (2015). https://doi.org/10.1039/C5AY01651G
- Nirschl, M., Reuter, F., Voros, J., Review of transducer principles for label-free biomolecular interaction analysis. Biosensors., 1(3), 70-92 (2011). https://doi.org/10.3390/bios1030070
- Piro, B., Reisberg, S., Recent advances in electrochemical immunosensors. Sensors, 17(4), 794 (2017). https://doi.org/10.3390/s17040794
- Campana, A.L., Florez, S.L., Noguera, M.J., Fuentes, O.P., Ruiz Puentes, P., Cruz, J.C., Osma, J.F., Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater. Biosensors, 9(1), 41(2019). https://doi.org/10.3390/bios9010041
- Dziabowska, K., Czaczyk, E., Nidzworski, D., Application of electrochemical methods in biosensing technologies. In Biosensing technologies for the detection of pathogens-A prospective way for rapid analysis, IntechOpen, (2017).
- Upadhyay, S., Sharma, M.K., Das, R., Narayanan, J., Application of nanomaterials in biosensing for foodborne pathogens detection. J. Food Bioeng. Nanop., 1(1), 32-55 (2016).
- Silva, N.F., Almeida, C.M., Magalhaes, J.M., Goncalves, M.P., Freire, C., Delerue-Matos, C., Development of a disposable paper-based potentiometric immunosensor for realtime detection of a foodborne pathogen. Biosens. Bioelectron., 111317 (2019).
- Li, Q., Lv, S., Lu, M., Lin, Z., & Tang, D., Potentiometric competitive immunoassay for determination of aflatoxin B 1 in food by using antibody-labeled gold nanoparticles. Microchimica Acta, 183(10), 2815-2822. (2016). https://doi.org/10.1007/s00604-016-1929-x
- Rubab, M., Shahbaz, H.M., Olaimat, A.N., Oh, D.-H., Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosens. Bioelectron., 105, 49-57 (2018). https://doi.org/10.1016/j.bios.2018.01.023
- Kumar, V., Kumar, V., Singh, A.K., Verma, N., Bhalla, T.C., A Potentiometric biosensor for cyanide detection using immobilized whole cell cyanide dihydratase of Flavobacterium indicum MTCC 6936. J. Anal. Chem, 73(10), 1014-1019 (2018). https://doi.org/10.1134/S1061934818100039
- Dutta, S., Padhye, S., Narayanaswamy, R., Persaud, K., An optical biosensor employing tiron-immobilised polypyrrole films for estimating monophenolase activity in apple juice. Biosens. Bioelectron., 16(4-5), 287-294 (2001). https://doi.org/10.1016/S0956-5663(01)00136-1
- Rotariu, L., Bala, C., Magearu, V., Yeast cells sucrose biosensor based on a potentiometric oxygen electrode. Anal. Chim., 458(1), 215-222 (2002). https://doi.org/10.1016/S0003-2670(01)01529-X
- Kim, M., Kim, M.-J., Isocitrate analysis using a potentiometric biosensor with immobilized enzyme in a FIA system. Food Res Int., 36(3), 223-230 (2003). https://doi.org/10.1016/S0963-9969(02)00140-0
- Stepurska, K., Soldatkin, О., Kucherenko, I., Arkhypova, V., Dzyadevych, S., Soldatkin, A., Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Anal. Chim. Acta., 854, 161-168 (2015). https://doi.org/10.1016/j.aca.2014.11.027
- Soldatkin, O.O., Stepurska, K., Arkhypova, V., Soldatkin, A., El'Skaya, A., Lagarde, F., Dzyadevych, S., Conductometric enzyme biosensor for patulin determination. Sens Actuators B Chem., 239, 1010-1015 (2017). https://doi.org/10.1016/j.snb.2016.08.121
- Dudchenko, O.Y., Pyeshkova, V.M., Soldatkin, O.O., Akata, B., Kasap, B.O., Soldatkin, A.P., Dzyadevych, S.V., Development of silicalite/glucose oxidase-based biosensor and its application for glucose determination in juices and nectars. Nanoscale Res. Lett., 11(1), 59 (2016). https://doi.org/10.1186/s11671-016-1275-2
- Adley, C., Ryan, M., 2015, Conductometric biosensors for high throughput screening of pathogens in food. In high throughput screening for food safety assessment, Elsevier. pp 315-326.
- Pilo, M., Farre, R., Lachowicz, J.I., Masolo, E., Panzanelli, A., Sanna, G., Senes, N., Sobral, A., Spano, N., Design of amperometric biosensors for the detection of glucose prepared by immobilization of glucose oxidase on conducting (poly) thiophene films. J. Anal. Methods, 2018, (2018).
- Contreras-Naranjo, J.E., Aguilar, O., Suppressing non-specific binding of proteins onto electrode surfaces in the development of electrochemical immunosensors. Biosensors, 9(1), 15 (2019). https://doi.org/10.3390/bios9010015
- Sandford, C., Edwards, M.A., Klunder, K., Hickey, D.P., Li, M., Barman, K., Sigman, M.S., White, H.S., Minteer, S., A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chem. Sci., 6404-6422 (2019).
- Shkotova, L., Goriushkina, T., Tran-Minh, C., Chovelon, J.-M., Soldatkin, A., Dzyadevych, S., Amperometric biosensor for lactate analysis in wine and must during fermentation. Mater. Sci. Eng. C, 28(5-6), 943-948 (2008). https://doi.org/10.1016/j.msec.2007.10.038
- Goriushkina, T.B., Soldatkin, A.P., Dzyadevych, S.V., Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine. J. Agric. Food Chem., 57(15), 6528-6535 (2009). https://doi.org/10.1021/jf9009087
- Fogel, R., Limson, J., Seshia, A.A., Acoustic biosensors. Essays Biochem., 60(1), 101-110 (2016). https://doi.org/10.1042/EBC20150011
- Gupta, M., Summuna, B., Gupta, S., Sharma, D., Biosensor based techniques: A reliable and primary tool for detection of foodborne pathogens. Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability. Ed(s). El Sheikha A., F., Levin R. E., Xu, J. Willey. USA, 361 (2018).
- Pohanka, M., Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials, 11(3), 448 (2018). https://doi.org/10.3390/ma11030448
- Chauhan, R., Solanki, P.R., Singh, J., Mukherjee, I., Basu, T., Malhotra, B., A novel electrochemical piezoelectric label free immunosensor for aflatoxin B1 detection in groundnut. Food Control, 52, 60-70 (2015). https://doi.org/10.1016/j.foodcont.2014.12.009
- Chauhan, R., Singh, J., Solanki, P.R., Basu, T., O'Kennedy, R., Malhotra, B., Electrochemical piezoelectric reusable immunosensor for aflatoxin B1 detection. Biochem. Eng. J, 103, 103-113 (2015). https://doi.org/10.1016/j.bej.2015.07.002
- Yun, Y., Pan, M., Wang, L., Li, S., Wang, Y., Gu, Y., Yang, J., Wang, S., Fabrication and evaluation of a label-free piezoelectric immunosensor for sensitive and selective detection of amantadine in foods of animal origin. Anal. Bioanal. Chem, 1-9 (2019).
- Melo, A.M.A., Alexandre, D.L., Furtado, R.F., Borges, M.F., Figueiredo, E.A.T., Biswas, A., Cheng, H.N., Alves, C.R., Electrochemical immunosensors for Salmonella detection in food. Appl Microbiol Biotechnol, 100(12), 5301-5312 (2016). https://doi.org/10.1007/s00253-016-7548-y
- Wang, H., Wang, L., Hu, Q., Wang, R., Li, Y., Kidd, M., Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. J. Food Prot., 81(8), 1321-1330 (2018). https://doi.org/10.4315/0362-028X.JFP-17-381
- Radhakrishnan, R., Poltronieri, P., Fluorescence-free biosensor methods in detection of food pathogens with a special focus on Listeria monocytogenes. Biosensors, 7(4) pii: E63 (2017).
- Yu, X., Chen, F., Wang, R., Li, Y., Whole-bacterium SELEX of DNA aptamers for rapid detection of E. coli O157: H7 using a QCM sensor. J. Biotechnol., 266, 39-49 (2018). https://doi.org/10.1016/j.jbiotec.2017.12.011
- Wong, Y., Ng, S., Ng, M., Si, S., Yao, S., Fung, Y., Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. Biosens. Bioelectron, 17(8), 676-684 (2002). https://doi.org/10.1016/S0956-5663(02)00030-1
- Karaseva, N., Ermolaeva, T., A piezoelectric immunosensor for chloramphenicol detection in food. Talanta, 93, 44-48 (2012). https://doi.org/10.1016/j.talanta.2011.12.047
- Ding, J., Lu, Z., Wang, R., Shen, G., Xiao, L., Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for 2, 4-dichlorophenoxyacetic acid quantification. Sensor Actuat B-Chem. 193, 568-573 (2014). https://doi.org/10.1016/j.snb.2013.11.079
- Vashist, S.K., A review of microcantilevers for sensing applications. J. of Nanotechnology, 3, 1-18 (2007).
- Flores-Perez, R., Gupta, A.K., Bashir, R., Ivanisevic, A., Cantilever-based sensor for the detection of different chromophore isomers. Anal. Chem., 79(12), 4702-4708 (2007). https://doi.org/10.1021/ac0703000
- Wu, W.-H., Zhu, K.-D., Proposition of a silica nanoparticleenhanced hybrid spin-microcantilever sensor using nonlinear optics for detection of DNA in liquid. Sensors, 15(10), 24848-24861 (2015). https://doi.org/10.3390/s151024848
- Khemthongcharoen, N., Wonglumsom, W., Suppat, A., Jaruwongrungsee, K., Tuantranont, A., Promptmas, C., Piezoresistive microcantilever-based DNA sensor for sensitive detection of pathogenic Vibrio cholerae O1 in food sample. Biosens. Bioelectron., 63, 347-353 (2015). https://doi.org/10.1016/j.bios.2014.07.068
- Nallathambi, A., Shanmuganantham, T., A cantilever based MEMS sensor for detection of greenhouse gases. Int. J. Eng. Res, (2), 16-21 (2015).
- Rotake, D., Darji, A., Heavy metal ion detection in water using MEMS based sensor. Materials Today: Proceedings, 5(1), 1530-1536 (2018). https://doi.org/10.1016/j.matpr.2017.11.242
- Ilic, B., Yang, Y., Aubin, K., Reichenbach, R., Krylov, S., Craighead, H., Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Letters, 5(5), 925-929 (2005). https://doi.org/10.1021/nl050456k
- Bao, Y., Xu, P., Cai, S., Yu, H., Li, X., Detection of volatileorganic-compounds (VOCs) in solution using cantileverbased gas sensors. Talanta, 182, 148-155 (2018). https://doi.org/10.1016/j.talanta.2018.01.086
- Lang, H.P., Hegner, M., Gerber, C., 2017, Nanomechanical cantilever array sensors. In Springer Handbook of Nanotechnology, Springer. Columbus. USA. pp 457-485.
- Alim, S., Vejayan, J., Yusoff, M.M., Kafi, A., Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: a review. Biosens. Bioelectron., 121, 125-136 (2018). https://doi.org/10.1016/j.bios.2018.08.051
- Cheng, N., Song, Y., Zeinhom, M.M., Chang, Y.-C., Sheng, L., Li, H., Du, D., Li, L., Zhu, M.-J., Luo, Y., Nanozymemediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl. Mater. Interfaces, 9(46), 40671-40680 (2017). https://doi.org/10.1021/acsami.7b12734
- Lu, Y., Shi, Z., Liu, Q., Smartphone-based biosensors for portable food evaluation. Curr Opin Food Sci., 28, 74-81 (2019). https://doi.org/10.1016/j.cofs.2019.09.003
- Lin, H.-Y., Huang, C.-H., Park, J., Pathania, D., Castro, C. M., Fasano, A., Weissleder, R., Lee, H., Integrated magnetochemical sensor for on-site food allergen detection. ACS nano., 11(10), 10062-10069 (2017). https://doi.org/10.1021/acsnano.7b04318