References
- Amoah J, Kahar P, Ogino C, Kondo A. 2019. Bioenergy and Biorefinery: feedstock, biotechnological conversion and products. Biotechnol. J. 14: e1800494.
- Gray KA, Zhao L, Emptage M. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10: 141-146. https://doi.org/10.1016/j.cbpa.2006.02.035
- Turner TL, Kim H, Kong II, Liu JJ, Zhang GC, Jin YS. 2018. Engineering and evolution of Saccharomyces cerevisiae to produce biofuels and chemicals. Adv. Biochem. Eng. Biotechnol. 162: 175-215.
- Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62: 334-361. https://doi.org/10.1128/mmbr.62.2.334-361.1998
- Kayikci O, Nielsen J. 2015. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 15: fov068. https://doi.org/10.1093/femsyr/fov068
- Jin YS, Cate JH. 2017. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr. Opin. Chem. Biol. 41: 99-106. https://doi.org/10.1016/j.cbpa.2017.10.025
- Park YC, Oh EJ, Jo JH, Jin YS, Seo JH. 2016. Recent advances in biological production of sugar alcohols. Curr. Opin. Biotechnol. 37: 105-113. https://doi.org/10.1016/j.copbio.2015.11.006
- Zhang GC, Liu JJ, Kong II, Kwak S, Jin YS. 2015. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr. Opin. Chem. Biol. 29: 49-57. https://doi.org/10.1016/j.cbpa.2015.09.008
- Kim SR, Park YC, Jin YS, Seo JH. 2013. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 31: 851-861. https://doi.org/10.1016/j.biotechadv.2013.03.004
- Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, et al. 2013. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One. 8: e57048. https://doi.org/10.1371/journal.pone.0057048
- Tsai CS, Kong II, Lesmana A, Million G, Zhang GC, Kim SR, Jin YS. 2015. Rapid and marker‐free refactoring of xylose‐fermenting yeast strains with Cas9/CRISPR. Biotechnol. Bioeng. 112: 2406-2411. https://doi.org/10.1002/bit.25632
- Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 108: 504-509. https://doi.org/10.1073/pnas.1010456108
- Ha SJ, Galazka JM, Oh EJ, Kordić V, Kim H, Jin YS, et al. 2013. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab. Eng. 15: 134-143. https://doi.org/10.1016/j.ymben.2012.11.005
- Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30: 274-282. https://doi.org/10.1016/j.tibtech.2012.01.005
-
Bae YH, Kang KH, Jin YS, Seo JH. 2014. Molecular cloning and expression of fungal cellobiose transporters and
${\beta}$ -glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J. Biotechnol. 169: 34-41. https://doi.org/10.1016/j.jbiotec.2013.10.030 - Chomvong K, Kordić V, Li X, Bauer S, Gillespie AE, Ha SJ, et al. 2014. Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. Biotechnol. Biofuels. 7: 85. https://doi.org/10.1186/1754-6834-7-85
- Agbogbo FK, Coward-Kelly G. 2008. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol. Lett. 30: 1515-1524. https://doi.org/10.1007/s10529-008-9728-z
- Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, et al. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 25: 319-326. https://doi.org/10.1038/nbt1290
- Perego P, Converti A, Palazzi E, Del Borghi M, Ferraiolo G. 1990. Fermentation of hardwood hemicellulose hydrolysate by Pachysolen tannophilus, Candida shehatae and Pichia stipitis. J. Ind. Microbiol. 6: 157-164. https://doi.org/10.1007/BF01577690
- Geiger M, Gibbons J, West T, Hughes SR, Gibbons W. 2012. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production. J. Lab. Autom. 17: 417-424. https://doi.org/10.1177/2211068212452873
- Lang GI, Desai MM. 2014. The spectrum of adaptive mutations in experimental evolution. Genomics 104: 412-416. https://doi.org/10.1016/j.ygeno.2014.09.011
- Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. 2019. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 8: 1-16. https://doi.org/10.1016/j.ymben.2005.08.003
- Winkler JD, Kao KC. 2014. Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104: 406-411. https://doi.org/10.1016/j.ygeno.2014.09.006
- Jeffries TW, Van Vleet JRH. 2009. Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res. 9: 793-807. https://doi.org/10.1111/j.1567-1364.2009.00525.x
- Ha SJ, Kim H, Lin Y, Jang M-U, Galazka JM, Kim TJ, et al. 2013. Single amino acid substitutions in HXT2. 4 from Scheffersomyces stipitis lead to improved cellobiose fermentation by engineered Saccharomyces cerevisiae. Appl. Environ. Microbiol. 79: 1500-1507. https://doi.org/10.1128/AEM.03253-12
- Nelson SS, Van Vleet JH, Jeffries TW. 2010. Presented at the 32nd Symposium on Biotechnology for Fuels and Chemicals, Clearwater Beach, FL.