References
- Anne J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. 2014. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. Biochim. Biophys. Acta 1843: 1750-1761. https://doi.org/10.1016/j.bbamcr.2013.12.023
- Uppenberg J, Hansen MT, Patkar S, Jones TA. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Curr. Biol. 2: 293-308.
- Emond S. 2010. New efficient recombinant expression system to engineer Candida antarctica lipase B. Appl. Environ. Microbiol. 76: 2684-2687. https://doi.org/10.1128/AEM.03057-09
- Liu ZQ, Zheng XB, Zhang SP, Zheng YG, 2012. Cloning, expression and characterization of a lipase gene from the Candida antarctica ZJB09193 and its application in biosynthesis of vitamin A esters. Microbiol. Res. 167: 452-460. https://doi.org/10.1016/j.micres.2011.12.004
- Mertens N, Remaut E, Fiers W. 1995. Tight transcriptional control mechanism ensures stable high-level expression from T7 promoterbased expression plasmids. Biotechnology 13: 175-179.
- Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73. https://doi.org/10.1016/0378-1119(94)90324-7
- Hermann T. 2001. Proteome analysis of Corynebacterium glutamicum. Electrophoresis . 22: 1712-1723. https://doi.org/10.1002/1522-2683(200105)22:9<1712::AID-ELPS1712>3.0.CO;2-G
- Watanabe K. 2009. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology 155: 741-750. https://doi.org/10.1099/mic.0.024075-0
- Yim SS, Choi JW, Lee RJ, Lee YJ, Lee SH, Kim SY , et al. 2016. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol. Bioeng. 113: 163-172. https://doi.org/10.1002/bit.25692
- Teramoto H, Watanabe K, Suzuki N, Inui M, Yukawa H. 2011. High yield secretion of heterologous proteins in Corynebacterium glutamicum using its own Tat-type signal sequence. Appl. Microbiol. Biotechnol. 91: 677-687. https://doi.org/10.1007/s00253-011-3281-8
- Yukawa H, Inui M. 2013. Corynebacterium glutamicum: Biology and Biotechnology, vol. 23. Springer.
- Liebl W, Sinskey AJ, Schleifer KH. 1992. Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J. Bacteriol. 174: 1854-1861. https://doi.org/10.1128/jb.174.6.1854-1861.1992
- Itaya H, Kikuchi Y. 2008. Secretion of Streptomyces mobaraensis pro-transglutaminase by coryneform bacteria. Appl. Microbiol. Biotechnol. 78: 621-625. https://doi.org/10.1007/s00253-007-1340-y
- Hermann T. 2003. Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 104: 155-172. https://doi.org/10.1016/S0168-1656(03)00149-4
- Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A. 1995. Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl. Environ. Microbiol. 61: 1610-1613. https://doi.org/10.1128/aem.61.4.1610-1613.1995
- van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545. https://doi.org/10.1007/s002530051557
- Schafer A, Kalinowksi J, Simon R, Seep-Feldhaus AH, Puhler A. 1990. High-frequency conjugal plasmid transfer from gramnegative Escherichia coli to various gram-positive coryneform bacteria. J. Bacteriol. 172: 1663-1666. https://doi.org/10.1128/jb.172.3.1663-1666.1990
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Stoytcheva M, Montero G, Zlatev R, Leon JA, Gochev V. 2012. Analytical Methods for Lipases Activity Determination: A Review. Curr. Anal. Chem. 8: 400-407. https://doi.org/10.2174/157341112801264879
- Sigurgisladottir S, Konraosdottir M, Jonsson A, Kristjansson JK, Matthiasson E. 1993. Lipase activity of thermophilic bacteria from icelandic hot springs. Biotechnol. Lett. 15: 361-366. https://doi.org/10.1007/BF00128277
- Sharma R, Chisti Y, Banerjee UC. 2001. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19: 627-662. https://doi.org/10.1016/S0734-9750(01)00086-6
- Blank K, Morfill J, Gumpp H, Gaub HE. 2006. Functional expression of Candida antarctica lipase B in Eschericha coli. J. Biotechnol. 125: 474-483. https://doi.org/10.1016/j.jbiotec.2006.04.004
- Ujiie A, Nakano H, Iwasaki Y. 2016. Extracellular production of Pseudozyma Candida antarctica lipase B with genuine primary sequence in recombinant Escherichia coli. J. Biosci. Bioeng. 121: 303-309. https://doi.org/10.1016/j.jbiosc.2015.07.001
- Liu D, Schmid RD, Rusnak M. 2006. Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm - A screening system for a frequently used biocatalyst. Appl. Microbiol. Biotechnol. 72: 1024-1032. https://doi.org/10.1007/s00253-006-0369-7
- Riordan JF. 1977. The role of metals in enzyme activity. Annal. Clin. Lab. Sci. 7: 119-129.
- Unthan S. 2014. Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium. Biotechnol. Bioeng. 111: 359-371. https://doi.org/10.1002/bit.25103
- Watanabe K, Teramoto H, Suzuki N, Inui M, Yukawa H. 2013. Influence of SigB inactivation on Corynebacterium glutamicum protein secretion. Appl. Microbiol. Biotechnol. 97: 4917-4926. https://doi.org/10.1007/s00253-012-4586-y
- Rotticci-Mulder JC, Gustavsson M, Holmquist M, Hult K, Martinelle M. 2001. Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain. Protein Expr. Purif. 21: 386-392. https://doi.org/10.1006/prep.2000.1387
- Han SJ. 2003. Expression and characterization of a novel enantioselective lipase from Acinetobacter species SY-01. Biochimie 85: 501-510. https://doi.org/10.1016/S0300-9084(03)00057-9
- Bora L, Bora M. 2012. Optimization of extracellular thermophilic highly alkaline lipase from thermophilic bacillus sp isolated from hotspring of Arunachal Pradesh, India. Braz. J. Microbiol. 43: 30-42. https://doi.org/10.1590/S1517-83822012000100004
- Kanmani P, Kumaresan K, Aravind J. 2015. Gene cloning, expression, and characterization of the bacillus amyloliquefaciens PS35 lipase. Braz. J. Microbiol. 46: 1235-1243. https://doi.org/10.1590/S1517-838246420141068
- Rifaat HM, El-mahalawy AA, El-menofy HA, Donia SA. 2010. Production, optimization and partial purification of lipase from Fusarium oxysporum. J. Appl. Sci. Environ. Sanit. 5: 39-53.
- Medyantseva EP, Vertlib MG, Budnikov GK. 1998. Metal ions as enzyme effectors. Russ. Chem. Rev. 67: 225-232. https://doi.org/10.1070/RC1998v067n03ABEH000228
- Vieira Gomes AM, Souza Carmo T, Silva Carvalho L, Mendonca Bahia F, Parachin NS. 2018. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6. pii: E38.
Cited by
- Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry vol.10, pp.9, 2019, https://doi.org/10.3390/catal10091032