DOI QR코드

DOI QR Code

Molecular Cloning and Expression of Candida antarctica lipase B in Corynebacterium genus

  • Gonzalez, Tamara (Department of Chemical Engineering, Tsinghua University) ;
  • M'Barek, Hasna Nait (Laboratory of Plant Biotechnology and Molecular Biology, Faculty of Sciences, Moulay Ismail University) ;
  • Gomaa, Ahmed E. (Department of Chemical Engineering, Tsinghua University) ;
  • Hajjaj, Hassan (Laboratory of Plant Biotechnology and Molecular Biology, Faculty of Sciences, Moulay Ismail University) ;
  • Zhen, Chen (Department of Chemical Engineering, Tsinghua University) ;
  • Dehua, Liu (Department of Chemical Engineering, Tsinghua University)
  • Received : 2019.05.08
  • Accepted : 2019.09.04
  • Published : 2019.12.28

Abstract

This study, for the first time, reports the functional expression of lipase B derived from the yeast Candida antarctica (CALB) in Corynebacterium strain using the Escherichia coli plasmid PK18. The CALB gene fragment encoding a 317-amino-acid protein was successfully obtained from the total RNA of C. antarctica. CALB was readily produced in the Corynebacterium strain without the use of induction methods described in previous studies. This demonstrated the extracellular production of CALB in the Corynebacterium strain. CALB produced in the Corynebacterium MB001 strain transformed with pEC-CALB recombinant plasmid exhibited maximum extracellular enzymatic activity and high substrate affinity. The optimal pH and temperature for the hydrolysis of 4-nitrophenyl laurate by CALB were 9.0 and 40℃, respectively. The enzyme was stable at pH 10.7 in the glycine-KOH buffer and functioned as an alkaline lipase. The CALB activity was inhibited in the presence of high concentration of Mg2+, which indicated that CALB is not a metalloenzyme. These properties are key for the industrial application of the enzyme.

Keywords

References

  1. Anne J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. 2014. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. Biochim. Biophys. Acta 1843: 1750-1761. https://doi.org/10.1016/j.bbamcr.2013.12.023
  2. Uppenberg J, Hansen MT, Patkar S, Jones TA. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Curr. Biol. 2: 293-308.
  3. Emond S. 2010. New efficient recombinant expression system to engineer Candida antarctica lipase B. Appl. Environ. Microbiol. 76: 2684-2687. https://doi.org/10.1128/AEM.03057-09
  4. Liu ZQ, Zheng XB, Zhang SP, Zheng YG, 2012. Cloning, expression and characterization of a lipase gene from the Candida antarctica ZJB09193 and its application in biosynthesis of vitamin A esters. Microbiol. Res. 167: 452-460. https://doi.org/10.1016/j.micres.2011.12.004
  5. Mertens N, Remaut E, Fiers W. 1995. Tight transcriptional control mechanism ensures stable high-level expression from T7 promoterbased expression plasmids. Biotechnology 13: 175-179.
  6. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73. https://doi.org/10.1016/0378-1119(94)90324-7
  7. Hermann T. 2001. Proteome analysis of Corynebacterium glutamicum. Electrophoresis . 22: 1712-1723. https://doi.org/10.1002/1522-2683(200105)22:9<1712::AID-ELPS1712>3.0.CO;2-G
  8. Watanabe K. 2009. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology 155: 741-750. https://doi.org/10.1099/mic.0.024075-0
  9. Yim SS, Choi JW, Lee RJ, Lee YJ, Lee SH, Kim SY , et al. 2016. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol. Bioeng. 113: 163-172. https://doi.org/10.1002/bit.25692
  10. Teramoto H, Watanabe K, Suzuki N, Inui M, Yukawa H. 2011. High yield secretion of heterologous proteins in Corynebacterium glutamicum using its own Tat-type signal sequence. Appl. Microbiol. Biotechnol. 91: 677-687. https://doi.org/10.1007/s00253-011-3281-8
  11. Yukawa H, Inui M. 2013. Corynebacterium glutamicum: Biology and Biotechnology, vol. 23. Springer.
  12. Liebl W, Sinskey AJ, Schleifer KH. 1992. Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J. Bacteriol. 174: 1854-1861. https://doi.org/10.1128/jb.174.6.1854-1861.1992
  13. Itaya H, Kikuchi Y. 2008. Secretion of Streptomyces mobaraensis pro-transglutaminase by coryneform bacteria. Appl. Microbiol. Biotechnol. 78: 621-625. https://doi.org/10.1007/s00253-007-1340-y
  14. Hermann T. 2003. Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 104: 155-172. https://doi.org/10.1016/S0168-1656(03)00149-4
  15. Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A. 1995. Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl. Environ. Microbiol. 61: 1610-1613. https://doi.org/10.1128/aem.61.4.1610-1613.1995
  16. van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545. https://doi.org/10.1007/s002530051557
  17. Schafer A, Kalinowksi J, Simon R, Seep-Feldhaus AH, Puhler A. 1990. High-frequency conjugal plasmid transfer from gramnegative Escherichia coli to various gram-positive coryneform bacteria. J. Bacteriol. 172: 1663-1666. https://doi.org/10.1128/jb.172.3.1663-1666.1990
  18. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  19. Stoytcheva M, Montero G, Zlatev R, Leon JA, Gochev V. 2012. Analytical Methods for Lipases Activity Determination: A Review. Curr. Anal. Chem. 8: 400-407. https://doi.org/10.2174/157341112801264879
  20. Sigurgisladottir S, Konraosdottir M, Jonsson A, Kristjansson JK, Matthiasson E. 1993. Lipase activity of thermophilic bacteria from icelandic hot springs. Biotechnol. Lett. 15: 361-366. https://doi.org/10.1007/BF00128277
  21. Sharma R, Chisti Y, Banerjee UC. 2001. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19: 627-662. https://doi.org/10.1016/S0734-9750(01)00086-6
  22. Blank K, Morfill J, Gumpp H, Gaub HE. 2006. Functional expression of Candida antarctica lipase B in Eschericha coli. J. Biotechnol. 125: 474-483. https://doi.org/10.1016/j.jbiotec.2006.04.004
  23. Ujiie A, Nakano H, Iwasaki Y. 2016. Extracellular production of Pseudozyma Candida antarctica lipase B with genuine primary sequence in recombinant Escherichia coli. J. Biosci. Bioeng. 121: 303-309. https://doi.org/10.1016/j.jbiosc.2015.07.001
  24. Liu D, Schmid RD, Rusnak M. 2006. Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm - A screening system for a frequently used biocatalyst. Appl. Microbiol. Biotechnol. 72: 1024-1032. https://doi.org/10.1007/s00253-006-0369-7
  25. Riordan JF. 1977. The role of metals in enzyme activity. Annal. Clin. Lab. Sci. 7: 119-129.
  26. Unthan S. 2014. Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium. Biotechnol. Bioeng. 111: 359-371. https://doi.org/10.1002/bit.25103
  27. Watanabe K, Teramoto H, Suzuki N, Inui M, Yukawa H. 2013. Influence of SigB inactivation on Corynebacterium glutamicum protein secretion. Appl. Microbiol. Biotechnol. 97: 4917-4926. https://doi.org/10.1007/s00253-012-4586-y
  28. Rotticci-Mulder JC, Gustavsson M, Holmquist M, Hult K, Martinelle M. 2001. Expression in Pichia pastoris of Candida antarctica lipase B and lipase B fused to a cellulose-binding domain. Protein Expr. Purif. 21: 386-392. https://doi.org/10.1006/prep.2000.1387
  29. Han SJ. 2003. Expression and characterization of a novel enantioselective lipase from Acinetobacter species SY-01. Biochimie 85: 501-510. https://doi.org/10.1016/S0300-9084(03)00057-9
  30. Bora L, Bora M. 2012. Optimization of extracellular thermophilic highly alkaline lipase from thermophilic bacillus sp isolated from hotspring of Arunachal Pradesh, India. Braz. J. Microbiol. 43: 30-42. https://doi.org/10.1590/S1517-83822012000100004
  31. Kanmani P, Kumaresan K, Aravind J. 2015. Gene cloning, expression, and characterization of the bacillus amyloliquefaciens PS35 lipase. Braz. J. Microbiol. 46: 1235-1243. https://doi.org/10.1590/S1517-838246420141068
  32. Rifaat HM, El-mahalawy AA, El-menofy HA, Donia SA. 2010. Production, optimization and partial purification of lipase from Fusarium oxysporum. J. Appl. Sci. Environ. Sanit. 5: 39-53.
  33. Medyantseva EP, Vertlib MG, Budnikov GK. 1998. Metal ions as enzyme effectors. Russ. Chem. Rev. 67: 225-232. https://doi.org/10.1070/RC1998v067n03ABEH000228
  34. Vieira Gomes AM, Souza Carmo T, Silva Carvalho L, Mendonca Bahia F, Parachin NS. 2018. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6. pii: E38.

Cited by

  1. Advances in Recombinant Lipases: Production, Engineering, Immobilization and Application in the Pharmaceutical Industry vol.10, pp.9, 2019, https://doi.org/10.3390/catal10091032