References
- Barak JD, Schroeder BK. 2012. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. Annu. Rev. Phytopathol. 50: 241-266. https://doi.org/10.1146/annurev-phyto-081211-172936
- Watanabe Y, Ozasa K, Mermin JH, Griffin PM, Masuda K, Imashuku S, et al. 1999. Factory outbreak of Escherichia coli O157:H7 infection in Japan. Emerg. Infect. Dis. 5: 424-428. https://doi.org/10.3201/eid0503.990313
- Doyle MP, Erickson MC. 2008. Summer meeting 2007 - the problems with fresh produce: an overview. J. Appl. Microbiol. 105: 317-330. https://doi.org/10.1111/j.1365-2672.2008.03746.x
- Melotto M, Panchal S, Roy D. 2014. Plant innate immunity against human bacterial pathogens. Front Microbiol. 5: doi: 10.3389/fmicb.2014.00411.
- Gu G, Hu J, Cevallos-Cevallos JM, Richardson SM, Bartz JA, van Bruggen AHC. 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS One 6: e27340. https://doi.org/10.1371/journal.pone.0027340
- Roy D, Ranchal W, Rosa BA, Melotto M. 2013. Escherichia coli O157:H7 induces plant immunity than Salmonella enterica Typhimurium SL1344. Phyhtopathology 103: 326-332. https://doi.org/10.1094/PHYTO-09-12-0230-FI
- Seo S, Matthews KR. 2012. Influence of the plant defense response to Escherichia coli O157:H7 cell surface structures on survival of that enteric pathogen on plant surfaces. Appl. Environ. Microbiol. 78: 5882-5889. https://doi.org/10.1128/AEM.01095-12
- Meng F, Altier C, Martin GB. 2014. Salmonella colonization activates the plant immune system and benefits from association with plant pathogenic bacteria. Environ. Microbiol. 15: 2418-2430. https://doi.org/10.1111/1462-2920.12113
- Simko I, Zhou Y, Brandl M. 2015. Downy mildew disease promotes the colonization of romain lettuce by Escherichia coli O157:H7 and Salmonella enterica. BMC Microbiol. 15: 19. doi: 10.1186/s12866-015-0360-5.
- Nguyen HP, Chakravarthy S, Velasquez AC, McLane HL, Zeng L, Nakayashiki H, et al. 2010. Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Mol. Plant Microbe Interact. 23: 991-999. https://doi.org/10.1094/MPMI-23-8-0991
- Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, et al. 2010. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ. Microbiol. 12: 2385-2397. https://doi.org/10.1111/j.1462-2920.2010.02297.x
- Wright KM, Chapman S, McGeachy K, Humphris S, Campbell E, Toth IK, et al. 2013. The endophytic lifestyle of Escherichia coli O157:H7: quantification and internal localization in roots. Phytopathology 103: 333-340. https://doi.org/10.1094/PHYTO-08-12-0209-FI
- Solomon EB, Pang HJ, Matthews KR. 2003. Persistence of Escherichia coli O157:H7 on lettuce plants following spray irrigation with contaminated water. J. Food Prot. 66: 2198- 2202. https://doi.org/10.4315/0362-028X-66.12.2198
- Kroupitski Y, Golberg D, Belausov E, Pinto R, Swartzberg D, Granot D, et al. 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Appl. Environ. Microbiol. 75: 6076-6086. https://doi.org/10.1128/AEM.01084-09
- Thilmony R, Underwood W, He SY. 2006. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J. 46: 34-53. https://doi.org/10.1111/j.1365-313X.2006.02725.x
- Hauck P, Thilmony R, He SY. 2003. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc. Natl. Acad. Sci. USA 100: 8577-8582. https://doi.org/10.1073/pnas.1431173100
- Nürnberger T, Brunner F, Kemmerling B, Piater L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198: 249-266. https://doi.org/10.1111/j.0105-2896.2004.0119.x
- Potnis N, SotoArias JP, Cowles KN, van Bruggen AH, Jones JB, Barak JD. 2014. Xanthomonas perforans colonization influences Salmonella enterica in the tomato phyllosphere. Appl. Environ. Microbiol. 80: 3173-3180. https://doi.org/10.1128/AEM.00345-14
- Abramovitch RB, Kim Y-J, Chen S, Dickman MB, Martin GB. 2003. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J. 22: 60-69. https://doi.org/10.1093/emboj/cdg006
- Chang JH, Rathjen JP, Bernal AJ, Staskawicz BJ, Michelmore RW. 2000. AvrPto enhances growth and necrosis caused by Pseudomonas syringae pv. tomato in tomato lines lacking either Pto or Prf. Mol. Plant Microbe Interact. 13: 568-571. https://doi.org/10.1094/MPMI.2000.13.5.568
- Shan L, Thara VK, Martin GB, Zhou JM, Tang X. 2000. The Pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane. Plant Cell 12: 2323-2338. https://doi.org/10.2307/3871232
- Wei H-L, Chakravarthy S, Mathieu J, Helmann TC, Stodghill P, Swingle B, et al. 2015. Pseudomonas syringae pv. tomato DC3000 type III secretion effector polymutants reveal an interplay between HopAD1 and AvrPtoB. Cell Host Microbe 17: 752-762. https://doi.org/10.1016/j.chom.2015.05.007
- Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, et al. 2008. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4: 17-27. https://doi.org/10.1016/j.chom.2008.05.017
- Xin X, He SY. 2013. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 51: 473-498. https://doi.org/10.1146/annurev-phyto-082712-102321
- Almeida DP, Huber DJ. 1999. Apoplastic pH and inorganic ion levels in tomato fruit: a potential means for regulation of cell wall metabolism during ripening. Physiol. Plantarum 105: 506-512. https://doi.org/10.1034/j.1399-3054.1999.105316.x