References
- M.Caputo, Linear models of dissipation whose Q is almost frequency independent. Part II, J.Roy.Austral.Soc. 13 (1967) 529-539 https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
- Podlubny I, Fractional Differential Equations, New York: Academic Press, 1999.
- R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.
- Kai Diethelm, Neville J. Ford, Alan D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equation, Nonlinear Dyn. 29 (2009) 2-22.
- Junying Cao, Chuanju Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. comput. phys. 238 (2013) 154-168. https://doi.org/10.1016/j.jcp.2012.12.013
- Jun-Sheng Duan, Temuer Chaolu, Randolph Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method, Appl. Math. Comput. 218 (2012) 8370-8392. https://doi.org/10.1016/j.amc.2012.01.063
- Jun-Sheng Duan, Temuer Chaolu, Randolph Rach, Lei Lua, The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations, Comput. Math. Appl. 66 (2013) 726-736.
- I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun Nonlinear Sci Numer Sim. 14 (2009) 674-684. https://doi.org/10.1016/j.cnsns.2007.09.014
- A. Elsaid, Homotopy analysis method for solving a class of fractional partial differential equations, Commun Nonlinear Sci Numer Sim. 16 (2011) 3655-3664. https://doi.org/10.1016/j.cnsns.2010.12.040
- Xindong Zhang, Jianping Zhao, Juan Liu, Bo Tang, Homotopy perturbation method for two dimensional time-fractional wave equation, Appl. Math. Model. 38 (23) (2014) 5545-5552. https://doi.org/10.1016/j.apm.2014.04.018
- O. Abdulaziz, I. Hashim, S. Momani, Application of homotopy-perturbation method to fractional IVPs, J. Comput. Appl. Math. 216 (2008) 574-584. https://doi.org/10.1016/j.cam.2007.06.010
- Guo-Cheng Wu, A fractional variational iteration method for solving fractional nonlinear differential equations, Comput. Math. Appl. 61 (2011) 2186-2190. https://doi.org/10.1016/j.camwa.2010.09.010
- Yasir Khan, Naeem Faraz, Ahmet Yildirim, Qingbiao Wu, Fractional variational iteration method for fractional initial-boundary value problems arising in the application of nonlinear science, Comput. Math. Appl. 62 (2011) 2273-2278. https://doi.org/10.1016/j.camwa.2011.07.014
- Guo-Cheng Wu, Dumitru Baleanus, Variational iteration method for the Burgers' flow with fractional derivatives-New Lagrange multipliers, Appl. Math. Model. 37 (9) (2013) 6183-6190. https://doi.org/10.1016/j.apm.2012.12.018
- Z.Odibat, N. Shawagfeh, Generalized Talyor's formula, Appl. Math. Comput. 186 (2007) 286-29 https://doi.org/10.1016/j.amc.2006.07.102
- Zaid Odibat, Shaher Momani, Vedat Suat Erturk, Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comput. 197 (2008) 467-477. https://doi.org/10.1016/j.amc.2007.07.068
- A. Elsaid Fractional differential transform method combined with the Adomian polynomials, Appl. Math. Comput. 218 (2012) 6899-6911. https://doi.org/10.1016/j.amc.2011.12.066
- Kyunghoon Kim, Bongsoo Jang, A semi-analytic method with an effect of memory for solving fractional differential equations, Advances in difference equations 371 (2013)
- Bongsoo Jang, Efficient analytic method for solving nonlinear fractional differential equations, Appl. Math. Model. 38 (5-6) (2014) 1775-1787. https://doi.org/10.1016/j.apm.2013.09.018
- A. Di Matteo, A. Pirrotta, Generalized differential transform method for nonlinear boundary value problem of fractional order, Commun. Nonlinear Sci. Numer. Sim. 29 (2015) 88-101. https://doi.org/10.1016/j.cnsns.2015.04.017
- Z. Odibat, C. Bertelle, M.A. Aziz-Alaoui, G. Duchamp, A multi-step differential transform method and application to non-chaotic or chaotic systems, Comput. Math. Appl. 59 (2010) 1462-1472. https://doi.org/10.1016/j.camwa.2009.11.005
- V. Erturk, Z. Odibat, S. Momani, An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells, Comput. Math. Appl. 62 (2011) 992-1002.
- Eman Abuteena, Shaher Momanib, Ahmad Alawneh, Solving the fractional nonlinear Bloch system using the multi-step generalized differential transform method, Comput. Math. Appl. 68 (2014) 2124-2132. https://doi.org/10.1016/j.camwa.2013.05.013