DOI QR코드

DOI QR Code

미세기포 세척장비를 이용한 도로시설물 염화칼슘의 제거

Removal of calcium chloride in road structure using ultra-fine bubble washing machine

  • 박일건 ((주)평화엔지니어링 연구원) ;
  • 이준형 ((주)평화엔지니어링 연구원) ;
  • 박형준 ((주)평화엔지니어링 연구원) ;
  • 김현진 ((주)평화엔지니어링 연구원) ;
  • 김흥래 ((주)평화엔지니어링 연구원) ;
  • 조일형 ((주)지티앤)
  • 투고 : 2019.12.04
  • 심사 : 2019.12.30
  • 발행 : 2019.12.30

초록

본 연구는 도로시설물의 염화칼슘 제거를 위한 미세기포 세척장비의 최적 운용조건에 대하여 성능평가를 수행하였다. 실험에 사용된 미세기포의 직경은 196.6±100.6nm에 1.36×108개/ml의 농도를 나타낸다. 세척장비의 분사장치에 대한 실험 성능결과, 100bar의 분사압력에서 100cm, 150cm 분사거리에 약 93%, 91%의 세척효율이 나타나는 것으로 확인되었다. 미세기포 생성(순환)횟수를 2-6회로 증가시킴에 따라 최소 1%에서 7%까지 염화물 제거율이 높아짐을 확인하였다. 미세기포 생성 공기유량을 4 ml/min에서 0.5 ml/min으로 낮춤에 따라 세척효율이 최대 30%까지 증가하는 것이 확인되었다. 일반 상수도와 미세기포의 세척효율은 미세기포가 일반상수도 보다 세척효율이 25% 높게 나타났다.

This study was conducted to evaluate the optimal operating condition of ultra-fine bubble washing machine for removing calcium chloride from road concrete structure. The diameter of the ultra-fine bubble was measured to 196.6 ± 100.6 nm and the ultra-fine bubble concentration was measured to 1.36 × 108 cell/ml. As a result of the performance on the spray device of the washing machine, it was confirmed that the washing efficiency of 93% and 91% appeared at 100cm and 150cm of injection distance at 100bar injection pressure. By increasing the ultra-fine bubble generation cycles from 2 to 6, the chloride removal rate increased from 1% to 7%. As the ultra-fine bubble generation air flow was lowered from 4 ml/min to 0.5 ml/min, it was confirmed that the washing efficiency increased up to 30%. The washing efficiency of ultra-fine bubble water was 25% higher than normal water.

키워드

참고문헌

  1. H. S. Kim, K. H. Kim, H. H. Choi, J. C. Kim, "Improvements for the design, construction and maintenance of Bridge considering under de-icing salts environments", The Korea Institute For Structural Maintenance and Inspection 2019 Spring Conference, pp. 465-466, (2019).
  2. P. K. Metha, P. J. M. Monteriro. Concrete-Structure, Properties, and Materials 2nd Edition. pp. 10-450, Prentice Hall, (1993).
  3. Y. Farnam, D. Bentz, A. Hampton, J. Weiss, W.J. Weiss, "Acoustic emission and low-temperature calorimetry study of freeze and thaw behavior in cementitious materials exposed to sodium chloride salt", Transportation Research Record, Vol.2441, No.1, pp. 81-90, (2014). https://doi.org/10.3141/2441-11
  4. X. Shi, L. Fay, M.M. Peterson, Z. Yang, "Freeze-thaw damage and chemical change of a portland cement concrete in the presence of diluted deicers", Mater. Struct. Vol.43, No.7, pp. 933-946, (2010). https://doi.org/10.1617/s11527-009-9557-0
  5. Y. Qian, Y. Farnam, J. Weiss, "Using Acoustic Emission to Quantify Freeze-Thaw Damage of Mortar Saturated with NaCl Solutions", Proceedings of the 4th International conference on the durability of concrete structure, pp. 32-37, (2014).
  6. H. S. Kim, J. C. Kim, J. Y. Lee, "Field Investigation of Deterioration of Concrete on Road Structures by De-icing Salts ", Korea Concrete Institute Fall 2014 Conference, Vol.26, No.2, pp. 489-490, (2014).
  7. K. T. Ko, D. K. Kim, S. U. Kim, M. S. Jo, Y. C. Song, "A Compound Deterioration Assessment of Concrete Subjected to Freezing-Thawing and Chloride Attack", Korea Concrete Institute, Vol.13, No.4, pp. 397-405, (2001).
  8. N. I. Sung, D. J. Kim. A Study on the Maintenance Plan of Marine Environment Structures. pp. 165-180, Yooshin corporation Technology Newsletter Vol.11, (2004).
  9. M. Takahashi, "Zeta potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface". The Journal of Physical Chemistry B, Vol.109, No.46, pp. 21858-21864, (2005). https://doi.org/10.1021/jp0445270
  10. F. Y. Ushikubo, T. Furukawa, R. Nakagawa, M. Enari, Y. Makino, Y. Kawagoe, S. Oshita, "Evidence of the existence and the stability of nano-bubbles in water", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.361, No.1-3, pp. 31-37, (2010). https://doi.org/10.1016/j.colsurfa.2010.03.005
  11. P. Li, M. Takahashi, K. Chiba. "Enhanced free-radical generation by shrinking microbubbles using a copper catalyst", Chemosphere, Vol.77, No.8, pp. 1157-1160, (2009). https://doi.org/10.1016/j.chemosphere.2009.07.062
  12. M. Takahashi, K. Chiba, P. Li, "Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus", The Journal of Physical Chemistry B, Vol.111, No.6, pp. 1343-1347, (2007). https://doi.org/10.1021/jp0669254
  13. A. Agarwal, W. J. Ng, Y. Liu, "Principle and applications of microbubble and nanobubble technology for water treatment", Chemosphere, Vol.84, No.9, pp. 1175-1180, (2011). https://doi.org/10.1016/j.chemosphere.2011.05.054
  14. G. Liu, Z. Wu, V. S. Craig, "Cleaning of protein-coated surfaces using nanobubbles: an investigation using a quartz crystal microbalance", The Journal of Physical Chemistry C, Vol.112, No.43, pp. 16748-16753, (2008). https://doi.org/10.1021/jp805143c
  15. Z. Wu, H. Chen, Y. Dong, H. Mao, J. Sun, S. Chen, J. Hu, "Cleaning using nanobubbles: defouling by electrochemical generation of bubbles", Journal of colloid and interface science, Vol.328, No.1, pp. 10-14, (2008). https://doi.org/10.1016/j.jcis.2008.08.064
  16. Ministrt of Environment, Rules for Drinking Water Quality Standards and Inspections, Available From: http://www.law.go.kr/lsInfoP.do?lsiSeq=206 213&viewCls=lsRvsDocInfoR#. (accessed Sep., 11, 2019).
  17. B. Y. Lee, K. E. Kurtis, "Effect of pore structure on salt crystallization damage of cement-based materials: Consideration of w/b and nanoparticle use" Cement and Concrete Research, Vol.98, pp. 61-70. (2017). https://doi.org/10.1016/j.cemconres.2017.04.002
  18. D. Burfoot, K. Middleton, "Effects of operating conditions of high pressure washing on the removal of biofilms from stainless steel surfaces", Journal of food engineering, Vol.90, No.3, pp. 350-357, (2009). https://doi.org/10.1016/j.jfoodeng.2008.07.006