DOI QR코드

DOI QR Code

양이온성 계면활성제 (DTAB, TTAB 및 CTAB)에 의한 아닐린의 가용화에 대한 열역학적 고찰

hermodynamic Study on the Solubilization of Aniline by Cationic Surfactants (DTAB, TTAB, and CTAB)

  • 이동철 (한국기술교육대학교 응용화학공학과) ;
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Lee, Dong-Cheol (Department of Applied Chemical Engineering, Korea University of Tech. & Education) ;
  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Tech. & Education)
  • 투고 : 2019.09.03
  • 심사 : 2019.12.17
  • 발행 : 2019.12.30

초록

양이온성 계면활성제 (DTAB, TTAB 및 CTAB)에 의한 아닐린의 가용화현상을 연구하기 위하여 UV-Vis법을 이용하여 가용화상수(Ks)와 열역학 함수들을 계산하고 비교하였다. 그리고 이온염과 유기물의 첨가가 가용화상수에 어떠한 영향을 미치는지를 조사하였다. 또한 온도변화에 따른 Ks값의 변화를 계면활성제 종류별로 비교하고 분석하였으며, 가용화상수로부터 구한 여러 열역학적 함수를 비교하고 검토함으로써 아닐린의 가용화현상을 미시적으로 분석하고 해석하고자 하였다. 그 결과 양이온성 계면활성제에 의한 아닐린의 가용화현상에 대한 Gibbs 자유에너지와 엔탈피 변화 값은 모두 음의 값을 그리고 엔트로피 변화값은 모두 양의 값을 나타내었다. 가용화상수 값은 온도가 증가함에 따라 감소하고 계면활성제의 탄소사슬의 길이가 증가할수록 증가하였다. 이온염의 농도가 증가함에 따라 가용화에 대한 Gibbs 자유에너지값은 증가하다가 감소하는 경향을 보였다. 그리고 n-부탄올의 농도가 증가함에 따라 Gibbs 자유에너지는 계속 증가하는 경향을 보였다.

In order to study the solubilization of aniline by cationic surfactants (DTAB, TTAB and CTAB), the solubilization constant (Ks) and thermodynamic functions were measured and calculated by using the UV-Vis method. The solubilization constants of aniline with the change of temperature were measured, and the effects of addition of ionic salts and organics on the solubilization constants were investigated. These effects of additives and temperature changes were compared and analyzed for each type of surfactant, and the solubilization of aniline was analyzed microscopically by comparing and evaluating the thermodynamic functions obtained from the solubilization constants. As a result, the Gibbs free energy and enthalpy changes were both negative and the entropy changes were positive within the measured range for the solubilization of aniline by cationic surfactants. The solubilization constant value decreased with increasing temperature and increased with increasing carbon chain length of the surfactant. As the concentration of ionic salts increased, the Gibbs free energy change increased at first and then decreased. In n-butanol solution, the Gibbs free energy change tended to increase continuously with increasing the concentration of n-butanol.

키워드

참고문헌

  1. R. Mallikarjun, D. B. Dadyburjor, "Thermodynamics of Solubilization", J. colloid Interface Sci., Vol. 84, No.1, pp.73-90, (1981). https://doi.org/10.1016/0021-9797(81)90261-7
  2. L. Sepulveda, "Absorbances of Solution of Cationic Micelles and Organic Anions" J. colloid Interface Sci., Vol.46, No.3, pp. 372-379, (1974). https://doi.org/10.1016/0021-9797(74)90046-0
  3. N. M. Lee, B. H. Lee, "Study on the Solubilization of 4-Chlorobenzoic Acid by Lauryl Sulfobetaine Mixed Surfactant Systems", J. Korean Oil chem. Soc., Vol.31, No.4, pp. 612-622, (2014). https://doi.org/10.12925/jkocs.2014.31.4.612
  4. C. A. Bunton, L. Sepulveda, "Hydrophobic and Coulombic Interactions in the Micellar Binding of Phenols and Phenoxide Ions", J. Phys. Chem., Vol.83, No.6, pp. 680-683, (1979). https://doi.org/10.1021/j100469a008
  5. B. H. Lee, "Effects of Substituent, n-Butanol, and Sodium Chloride on the Solubilization of 4-Alkylphenols in TTAB Solutions", Colloid Interface Sci Commun, Vol.25, pp. 12-15, (2018). https://doi.org/10.1016/j.colcom.2018.05.001
  6. P. D. Burgo, E. Junquera, E. Aicart, "Mixed Micellization of a Nonionic-Cationic Surfactant System Constituted By n-Octyl-${\beta}$ - D-Glucopyranoside/Dodecyltrimethylammonium Bromide/$H_2O$. An Electrochemocal, Thermodynamic, and Spectroscopic Study", Langmuir, Vol.20, No.5, pp. 1587-1596, (2004). https://doi.org/10.1021/la035770d
  7. S. J. Bachofer, U. Simonis, "Determination of the Ion Exchange Constants of Four Aromatic Organic Anions Competing for a Cationic Micellar Interface", Langmuir, Vol.12, No.7, pp. 1744-1754, (1996). https://doi.org/10.1021/la950612a
  8. B. J. Kim, S. S. Im, S. G. Oh, "Investigation on the Solubilization Locus of Aniline-HCl Salt in SDS Micelles with 1H NMR Spectroscopy" Langmuir, Vol.17, No.2, pp. 565-566, (2001). https://doi.org/10.1021/la0012889
  9. G. C. kresheck, "Comparison of the Calorimetric and van't Hoff Enthalpy of Micelle Formation for a Nonionic Surfactant in $H_2O$ and $D_2O$ Solutions from 15 to $40^{\circ}C$", J. Phys. Chem. B, Vol.102, No.34, pp. 6596-6600, (1998). https://doi.org/10.1021/jp9820469
  10. D. C. Lee, B. H. Lee, "Effect of NaCl, n-Butanol, and Temperature on the Micellization of Ammonium Cationic Surfactants (DTAB, TTAB, and CTAB) in Aniline Solution", Journal of the Korean Applied Science and Technology, Vol.36, No.2, pp. 407-416, (2019). https://doi.org/10.12925/JKOCS.2019.36.2.407
  11. Y. Moroi, R. Matuura, "Thermodynamics of Solubilization into Surfactant Micelles: Effect of Hydrophobicity Both Solubilizate Surfactant Molecules", J. colloid Interface Sci., Vol.125, No.2, pp.456-462, (1988). https://doi.org/10.1016/0021-9797(88)90009-4
  12. C. Hirose, L. Sepulveda, "Transfer Free Energles of p-Alkyl-Subsituted Benzene Derivatives, Benzene, and Toluene from Water to Cationic and Anionic Micelles and to n-Heptane" J. Phys.Chem., Vol.85, pp. 3689-3694, (1981). https://doi.org/10.1021/j150624a032
  13. C. A. McMahon, B. Hawrylak, D. G. Marangoni, R. Palepu, "Calorimetric and NMR Investigations of the Micellar Properties of Sodium Dodecyl Sulfate in Aqueous Mixtures of Isomeric Butanediols", Langmuir, Vol.15, No.2, pp. 429-436, (1999). https://doi.org/10.1021/la971093+
  14. N. M. Lee, B. H. Lee, "Effects of Temperature and surfactant structure on the solubilisation of 4-chlorobenzoic acid by various surfctants", J. Chem. Thermodynamics, Vol.101, pp.1-6, (2016). https://doi.org/10.1016/j.jct.2016.05.002
  15. B. H. Lee, "Study on the micellization of tetradecyltrimethylammonium bromide by using the solubilization of 4-alkyphenol", Colloids and Surfaces A, Vol.578, pp. 123599, (2019). https://doi.org/10.1016/j.colsurfa.2019.123599
  16. B. H. Lee, "Realtionship between the Micellization of TTAB and the Solubilization of p-Bromophenol TTAB Solution", J. Korean Chem. Soc., Vol.57, No.6, pp. 665-671, (2013). https://doi.org/10.5012/jkcs.2013.57.6.665