DOI QR코드

DOI QR Code

포장층 두께와 교통하중 크기를 고려한 공동 발생 지반의 안정성 분석에 관한 수치해석

A Numerical Analysis on Stability Analysis of Cavity Ground considering Pavement Thickness and Traffic Load

  • You, Seung-Kyong (Dept. of Civil Engineering, Myongji College) ;
  • Ahn, Heechul (School of Civil and Environmental Engineering, Chung-Ang Univ.) ;
  • Kim, Young-Ho (School of Civil and Environmental Engineering, Chung-Ang Univ.) ;
  • Han, Jung-Geun (School of Civil and Environmental Engineering, Urban Design and Study, Chung-Ang Univ.) ;
  • Hong, Gigwon (Institute of Technology Research and Development, Korea Engineering & Construction) ;
  • Park, Jeong-Jun (Incheon Disaster Prevention Research Center, Incheon National University)
  • 투고 : 2019.12.04
  • 심사 : 2019.12.24
  • 발행 : 2019.12.30

초록

본 연구에서는 공동 발생 지반에 대한 안정성 분석을 목적으로 포장층 두께와 교통하중 크기를 고려한 일련의 유한요소 수치해석을 수행하였다. 본 수치해석 방법의 타당성 검증을 위해 선행된 수치해석 연구를 활용하여 공동 발생 지반의 역학적 거동을 모사하였으며, 기존의 현장계측 결과와 비교·분석하였다. 또한, 수치해석 결과로부터 지반의 간극비, 지표침하, 전단응력의 변화를 확인함으로써 전반적인 지반의 역학 거동을 확인할 수 있었으며, 본 연구에서 산정한 응력비 및 비파괴심도와 지표침하량의 관계를 이용하여 공동 발생 지반의 안전성을 분석하였다. 그 결과, 포장층 두께가 감소하고 교통하중 크기가 증가할수록 지표침하량의 증가와 함께 비파괴심도 및 지반의 전반적인 안정성은 감소함을 알 수 있었다.

In this study, a series of finite element numerical analyzes were performed considering the pavement thickness and traffic load for the purpose of stability analysis on the cavity ground. In order to verify the validity of this numerical method, the previous numerical analysis was used to simulate the mechanical behavior of cavity ground, and the results were compared and analyzed. Also, from the numerical results, it was possible to confirm the dynamic behavior of the ground by confirming the change of ground void ratio, surface settlement, and shear stress, and using the relationship between stress ratio, non-destructive depth and surface settlement, the safety of the was analyzed. As a result, as the pavement thickness decreased and the traffic load increased, the non-destructive depth and the overall stability of the ground decreased with the increase of surface settlement.

키워드

참고문헌

  1. Benz, T. (2007), Small-Strain Stiffness of Soils and its Numerical Consequences, Ph.D. Thesis, University of Stuttgart.
  2. Jee, J. B. and Kim, J. W. (2000), "Surface Subsidence according to Progressive Collapse of Circular opening", Journal of Korean Society for Rock Mechanics, Vol.10, pp.33-44.
  3. Kim, J. W. and Heo, S. (2016), "Stability Investigation of a Foundation Located above Limestone Cavities Using Scaled Model Tests", Tunnel and Underground Space of The Korean Society for Rock Mechanics, Vol.26, No.6, pp.493-507.
  4. Kim, Y. H., Kim, H. B. and Park, S. W. (2018), "Influence of Saturation and Soil Density on the Ground Subsidence Using Distinct Element Method", Journal of the Korean Geotechnical Society, Vol.34, No.8, pp.27-36. https://doi.org/10.7843/KGS.2018.34.8.27
  5. Kuwano, R., Sato, M. and Sera, R. (2010), "Study on the detection of underground cavity and ground loosening for the prevention of ground cave-in accident", Japanese Geotechnical Journal, Vol.5, No.2, pp.219-229. https://doi.org/10.3208/jgs.5.219
  6. Lee, K. C., Park, J. H., Choi, B. H. and Kim, D. W. (2018), "Analysis of Influencing Factors on Cavity Collapse and Evaluation of the Existing Cavity Management System", Journal of Korean Geosynthetics Society, Vol.17, No.1, pp.45-54. https://doi.org/10.12814/JKGSS.2018.17.1.045
  7. Mukunoki, T., Kumano, N. and Otani, J. (2012), "Image analysis of soil failure on defective underground pipe due to cyclic water supply and drainage using X-ray CT", Frontiers of Structural and Civil Engineering, Vol.6, No.2, pp.85-100. https://doi.org/10.1007/s11709-012-0159-5
  8. Oh, D. W., Kong, S. M., Lee, D. Y., Yoo, Y. S. and Lee, Y. J. (2015), "Effects of Reinforced Pseudo-Plastic Backfill on the Behavior of Ground around Cavity Developed due to Sewer Leakage", Journal of the Korean Geo-Environmental Society, Vol.16, No.12, pp.13-22.
  9. Park, H. M. and Choi, Y. W. (2019), "Evaluation of Structural Capacity of Asphalt Pavement in Subsurface Cavity Sections using Falling Weight Deflectometer Backcalculation Method", International Journal of Highway Engineering, Vol.21, No.4, pp.19-25. https://doi.org/10.7855/ijhe.2019.21.4.019
  10. Schanz, T., Verrmeer, P. A. and Bonnier, P. G. (1999), "The hardening soil model: Formulation and verification", Beyond 2000 in computational geotechnics, Balkema, Rotterdam, pp.1-16.
  11. Yoon, K. W., Lee, S. J., Park, Y. K., Lee, S. S., Lee, D. G. and Jeon, S. S. (2016), "Stability Analysis of Roadbed Associated with Groundwater Levels and Cavities in Adjacent to Urban Railways", 2016 Fall Conference Journal of The Korean Society for Railway, pp.986-991.
  12. You, S. K., Ahn, H. C., Kim, Y. H., Han, J. G., Hong, G. G. and Park, J. J. (2019), "A Numerical Study on the Occurrence Scope of Underground Cavity and Relaxation Zone Considering Sewerage Damage Width and Soil Depth", Journal of the Korean Geotechnical Society, Vol.35, No.1, pp.43-53. https://doi.org/10.7843/KGS.2019.35.1.43
  13. You, S. K., Ahn, H. C., Kim, Y. H., Jeong, M. W., Han, J. G. and Hong, G. G. (2018), "The Effect of Soil Depth on Surface Settlement according to Occurrence of Underground Cavity", 2018 Fall Conference of the Korean Geosynthetics Society, pp.66-67.