DOI QR코드

DOI QR Code

알칼라인 하이드라진 연료전지 운전 안정성을 위한 전극 구조

Effective Electrode Structure for the Stability of Alkaline Hydrazine Fuel Cells

  • 엄성현 (고등기술연구원 플랜트공정개발센터) ;
  • 홍수직 (광주과학기술원 지구환경공학부, Ertl탄소비움연구센터) ;
  • 이재영 (광주과학기술원 지구환경공학부, Ertl탄소비움연구센터)
  • Uhm, Sunghyun (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Hong, Sujik (Ertl Center for Electrochemistry and Catalysis, School of Earth Sciences and Environmental Engineering, GIST) ;
  • Lee, Jaeyoung (Ertl Center for Electrochemistry and Catalysis, School of Earth Sciences and Environmental Engineering, GIST)
  • 투고 : 2019.11.08
  • 심사 : 2019.11.25
  • 발행 : 2019.12.10

초록

하이드라진 직접 액체 연료전지는 이산화탄소를 배출하지 않으며, 높은 에너지 밀도를 가지고, 귀금속 촉매를 사용하지 않고도 높은 촉매 활성을 보이는 장점으로 유망한 연료전지로써 활발히 연구가 진행되어 왔다. 하지만, 고안전성 연료전지 운전 성능을 위해서는 전극촉매를 비롯한 핵심소재 개발 및 성능 연구를 토대로 연료의 물질전달 특성을 비롯한 하이드라진 연료전지 내에서 진행되고 있는 작동 프로세스를 충분히 이해할 필요성이 있다. 본 논문에서는 최근의 직접 하이드라진 연료전지 연구결과 중에 가격 경쟁력을 확보한 전극촉매 및 연료 확산, 물 관리, 기체 발생 측면에서 전극 구조 개발 동향을 소개하며 향후 개발 방향에 대해서 고찰하고자 한다.

Direct hydrazine fuel cells (DHFCs) have been considered to be one of the promising fuel cells because hydrazine as a liquid fuel possesses several advantages such as no emission of CO2, relatively high energy density and catalytic activity over platinum group metal (PGM)-free anode catalysts. Judging from plenty of research works, however, regarding key components such as electrocatalysts as well as their physicochemical properties, it becomes quite necessary to understand better the underlying processes in DHFCs for the long term stability. Herein, we highlight recent studies of DHFCs in terms of a systematic approach for developing cost-effective and stable anode catalysts and electrode structures that incorporate mass transport characteristics of hydrazine, water and gas bubbles.

키워드

참고문헌

  1. E. H. Yu, U. Krewer, and K. Scott, Principles and materials aspects of direct alkaline alcohol fuel cells, Energies, 3, 1499-1528 (2010). https://doi.org/10.3390/en3081499
  2. E. Antolini and E. R. Gonzalez, Alkaline direct alcohol fuel cells, J. Power Sources, 195, 3431-3450 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.145
  3. E. H. Yu, X. Wang, U. Krewer, L. Li, and K. Scott, Direct oxidation alkaline fuel cells: From materials to systems, Energy Environ. Sci., 5, 5668-5670 (2012). https://doi.org/10.1039/C2EE02552C
  4. S. Uhm, M. Seo, and J. Lee, Competitiveness of formic acid fuel cells: In comparison with methanol, Appl. Chem. Eng., 27, 123-127 (2016). https://doi.org/10.14478/ace.2016.1021
  5. D. R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources, 375, 158-169 (2018). https://doi.org/10.1016/j.jpowsour.2017.07.117
  6. G. E. Evans and K. V. Kordesch, Hydrazine-air fuel cells. Hydrazine-air fuel cells emerge from the laboratory, Science, 158, 1148-1152 (1967). https://doi.org/10.1126/science.158.3805.1148
  7. K. Tamura and T. Kahara, Exhaust gas compositions and fuel efficiencies of hydrazine-air fuel cells, J. Electrochem. Soc., 123, 776-780 (1976). https://doi.org/10.1149/1.2132932
  8. A. Serov and C. Kwak, Direct hydrazine fuel cells: A review, Appl. Catal. B, 98, 1-9 (2010). https://doi.org/10.1016/j.apcatb.2010.05.005
  9. K. Yamada, K. Asazawa, K. Yasuda, T. Ioroi, H. Tanaka, Y. Miyazaki, and T. Kobayashi, Investigation of PEM type direct hydrazine fuel cell, J. Power Sources, 115, 236-242 (2003). https://doi.org/10.1016/S0378-7753(03)00008-9
  10. K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi, and T. Kobayashi, A platinum-free zero-carbon-emission easy fueling direct hydrazine fuel cell for vehicles, Angew. Chem. Int. Ed., 46, 8024-8027 (2007). https://doi.org/10.1002/anie.200701334
  11. K. Asazawa, T. Sakamoto, S. Yamaguchi, K. Yamada, H. Fujikawa, H. Tanaka, and K. Oguro, Study of anode catalysts and fuel concentration on direct hydrazine alkaline anion-exchange membrane fuel cells, J. Electrochem. Soc., 156, B509-B512 (2009). https://doi.org/10.1149/1.3082129
  12. A. Serov, M. Padilla, A. J. Roy, P. Atanassov, T. Sakamoto, K. Asazawa, and H. Tanaka, Anode catalysts for direct hydrazine fuel cells: From laboratory test to an electric vehicle, Angew. Chem. Int. Ed., 53, 10336-10339 (2014). https://doi.org/10.1002/anie.201404734
  13. J. Sanabria-Chinchilla, K. Asazawa, T. Sakamoto, K. Yamada, H. Tanaka, and P. Strasser, Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways, J. Am. Chem. Soc., 133, 5425-5431 (2011). https://doi.org/10.1021/ja111160r
  14. T. Sakamoto, D. Matsumura, K. Asazawa, U. Martinez, A. Serov, K. Artyushkova, P. Atanassov, K. Tamura, Y. Nishihata, and H. Tanaka, Operando XAFS study of carbon supported Ni, NiZn, and Co catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells, Electrochim. Acta, 163, 116-122 (2015). https://doi.org/10.1016/j.electacta.2015.02.156
  15. F. Yang, K. Cheng, G. Wang, and D. Cao, Flower-like Co nano-particles deposited on Ni foam substrate as efficient noble metal-free catalyst for hydrazine oxidation, J. Electroanal. Chem., 756, 186-192 (2015). https://doi.org/10.1016/j.jelechem.2015.08.023
  16. T. Asset, A. Roy, T. Sakamoto, M. Padilla, I. Matanovic, K. Artyushkova, A. Serov, F. Maillard, M. Chatenet, K. Asazawa, H. Tanaka, and P. Atanassov, Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell, Electrochim. Acta, 215, 420-426 (2016). https://doi.org/10.1016/j.electacta.2016.08.106
  17. T. Sakamoto, T. Masud, K. Yoshimoto, H. Kishi, S. Yamaguchi, D. Matsumura, K. Tamura, A. Hori, Y. Horiuchi, A. Serov, K. Artyushkova, P. Atanassov, and H. Tanaka, $NiO/Nb_2O_5/C$ hydrazine electrooxidation catalysts for anion exchange membrane fuel cells, J. Electrochem. Soc., 164, F22-F234 (2017). https://doi.org/10.1149/2.0101702jes
  18. J. Jeong, M. Choun, and J. Lee, Tree-bark-shaped N-doped porous carbon anode for hydrazine fuel cells, Angew. Chem., 129, 13698-13701 (2017). https://doi.org/10.1002/ange.201707880
  19. Z. Lu, M. Sun, T. Xu, Y. Li, W. Xu, Z. Chang, Y. Ding, X. Sun, and L. Jiang, Superaerophobic electrodes for direct hydrazine fuel cells, Adv. Mater., 27, 2361-2366 (2015). https://doi.org/10.1002/adma.201500064
  20. K. Akbar, J. H. Kim, Z. Lee, M. Kim, Y. Yi, and S.-H. Chun, Superaerophobic graphene nano-hills for direct hydrazine fuel cells, NPG Asia Mater., 9, e378 (2017). https://doi.org/10.1038/am.2017.55
  21. W. X. Yin, Z. P. Li, J. K. Zhu, and H. Y. Qin, Effects of NaOH addition on performance of the direct hydrazine fuel cell, J. Power Sources, 182, 520-523 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.028
  22. Y. Meng, X. Zou, X. Huang, A. Goswami, Z. Liu, and T. Asefa, Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation, Adv. Mater., 26, 6510-6516 (2014). https://doi.org/10.1002/adma.201401969
  23. S. Lee, M. Choun, Y. Ye, J. Lee, Y. Mun, E. Kang, J. Hwang, Y.-H. Lee, C.-H. Shin, S.-H. Moon, S.-K. Kim, E. Lee, and J. Lee, Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: Effects of pore size and doping-site position, Angew. Chem. Int. Ed., 54, 9230-9234 (2015). https://doi.org/10.1002/anie.201501590
  24. T. Sakamoto, A. Serov, T. Masuda, M. Kamakura, K. Yoshimoto, T. Omata, H. Kishi, S. Yamaguchi, A. Hori, Y. Horiuchi, T. Terada, K. Artyushkova, P. Atanassov, and H. Tanaka, Highly durable direct hydrazine hydrate anion exchange membrane fuel cell, J. Power Sources, 375, 291-299 (2018). https://doi.org/10.1016/j.jpowsour.2017.05.052
  25. Z. Lu, Y. Li, X. Lei, J. Liu, and X. Sun, Nanoarray based "superaerophobic" surfaces for gas evolution reaction electrodes, Mater. Horiz., 2, 294-298 (2015). https://doi.org/10.1039/C4MH00208C
  26. P. Argyropoulos, K. Scott, and W. M. Taama, Carbon dioxide evolution patterns in direct methanol fuel cells, Electrochim. Acta, 44, 3575-3584 (1999). https://doi.org/10.1016/S0013-4686(99)00102-4
  27. H. Yang, T. S. Zhao, and Q. Ye, In situ visualization study of $CO_2$ gas bubble behavior in DMFC anode flow fields, J. Power Sources, 139, 79-90 (2005). https://doi.org/10.1016/j.jpowsour.2004.05.033
  28. K. Scott, P. Argyropoulos, P. Yiannopoulos, and W. M. Taama, Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds, J. Appl. Electrochem., 31, 823-832 (2001). https://doi.org/10.1023/A:1017559124395
  29. X. Chen, Y. Wu, B. Su, J. Wang, Y. Song, and L. Jiang, Terminating marine methane bubbles by superhydrophobic sponges, Adv. Mater., 24, 5884-5889 (2012). https://doi.org/10.1002/adma.201202061
  30. J. Wang, Q. Yang, M. Wang, C. Wang, and L. Jiang, Rose petals with a novel and steady air bubble pinning effect in aqueous media, Soft Matter., 8, 2261-2266 (2012). https://doi.org/10.1039/c2sm06705f
  31. W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, and H. F. Bohn, The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water, Adv. Mater, 22, 2325-2328 (2010). https://doi.org/10.1002/adma.200904411
  32. B. Jeong, J. D. Ocon, and J. Lee, Electrode architecture in galvanic and electrolytic energy cells, Angew. Chem. Int. Ed., 55, 4870-4880 (2016). https://doi.org/10.1002/anie.201507780
  33. T. J. Omasta, L. Wang, X. Peng, C. A. Lewis, J. R. Varcoe, and W. E. Mustain, Importance of balancing membrane and electrode water in anion exchange membrane fuel cells, J. Power Sources, 375, 205-213 (2018). https://doi.org/10.1016/j.jpowsour.2017.05.006
  34. S. Uhm, H. J. Lee, and J. Lee, Understanding underlying processes in formic acid fuel cells, Phys. Chem. Chem. Phys., 11, 9326-9336 (2009). https://doi.org/10.1039/b909525j

피인용 문헌

  1. Steam activation of Fe-N-C catalyst for advanced power performance of alkaline hydrazine fuel cells vol.64, 2019, https://doi.org/10.1016/j.jechem.2021.04.029