References
- Balke K, Kadow M, Mallin H, Sass S, Bornscheuer UT. 2012. Discovery, application and protein engineering of Baeyer-Villiger monooxygenases for organic synthesis. Org. Biomol. Chem. 10: 6249-6265. https://doi.org/10.1039/c2ob25704a
- Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. 2012. Engineering the third wave of biocatalysis. Nature 485: 185-194. https://doi.org/10.1038/nature11117
- Deshpande PP, Nanduri VB, Pullockaran A, Christie H, Mueller RH, Patel RN. 2008. Microbial hydroxylation of obromophenylacetic acid: synthesis of 4-substituted-2, 3-dihydrobenzofurans. J. Ind. Microbiol. Biotechnol. 35: 901-906. https://doi.org/10.1007/s10295-008-0363-4
- Hollmann F, Arends IW, Holtmann D. 2011. Enzymatic reductions for the chemist. Green Chem. 13: 2285-2314. https://doi.org/10.1039/c1gc15424a
- Ni Y, Xu J-H. 2012. Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol. Adv. 30: 1279-1288. https://doi.org/10.1016/j.biotechadv.2011.10.007
- Ren Z-Q, Liu Y, Pei X-Q, Wang H-B, Wu Z-L. 2015. Bioreductive production of enantiopure (S)-duloxetine intermediates catalyzed with ketoreductase ChKRED15. J. Mol. Catal. B Enzym. 113: 76-81. https://doi.org/10.1016/j.molcatb.2015.01.008
- Tang C-G, Lin H, Zhang C, Liu Z-Q, Yang T, Wu Z-L. 2011. Highly enantioselective bioreduction of N-methyl-3-oxo-3-(thiophen-2-yl) propanamide for the production of (S)-duloxetine. Biotechnol. Lett. 33: 1435-1440. https://doi.org/10.1007/s10529-011-0578-8
- Wada M, Yoshizumi A, Furukawa Y, Kawabata H, Ueda M, Takagi H, et al. 2004. Cloning and overexpression of the Exiguobacterium sp. F42 gene encoding a new short chain dehydrogenase, which catalyzes the stereoselective reduction of ethyl 3-oxo-3-(2-thienyl) propanoate to ethyl (S)-3-hydroxy- 3-(2-thienyl) propanoate. Biosci. Biotechnol. Biochem. 68: 1481-1488. https://doi.org/10.1271/bbb.68.1481
- Liu H, Hoff BH, Anthonsen T. 2000. Chemo-enzymatic synthesis of the antidepressant duloxetine and its enantiomer. Chirality 12: 26-29. https://doi.org/10.1002/(SICI)1520-636X(2000)12:1<26::AID-CHIR5>3.0.CO;2-Z
-
Bymaster F, Beedle E, Findlay J, Gallagher P, Krushinski J, Mitchell S, et al. 2003. Duloxetine (Cymbalta
$^{TM}$ ), a dual inhibitor of serotonin and norepinephrine reuptake. Bioorg. Med. Chem. Lett. 13: 4477-4480. https://doi.org/10.1016/j.bmcl.2003.08.079 - Deeter J, Frazier J, Staten G, Staszak M, Weigel L. 1990. Asymmetric synthesis and absolute stereochemistry of LY248686. Tetrahedron Lett. 31: 7101-7104. https://doi.org/10.1016/S0040-4039(00)97251-4
- Nakamura K, Yamanaka R, Matsuda T, Harada T. 2003. Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron Asymmetry 14: 2659-2681. https://doi.org/10.1016/S0957-4166(03)00526-3
- Goldberg K, Schroer K, Lütz S, Liese A. 2007. Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols-part II: whole-cell reductions. Appl. Microbiol. Biotechnol. 76: 249-255. https://doi.org/10.1007/s00253-007-1005-x
- Sun T, Li B, Nie Y, Wang D, Xu Y. 2017. Enhancement of asymmetric bioreduction of N,N-dimethyl-3-keto-3-(2-thienyl)-1-propanamine to corresponding (S)-enantiomer by fusion of carbonyl reductase and glucose dehydrogenase. Bioresour. Bioprocess. 4: 21. https://doi.org/10.1186/s40643-017-0151-y
- Toomey RE, Wakil SJ. 1966. Studies on the mechanism of fatty acid synthesis. XVI. Preparation and general properties of acyl-malonyl acyl carrier protein-condensing enzyme from Escherichia coli. J. Biol. Chem. 241: 1159-1165. https://doi.org/10.1016/S0021-9258(18)96816-X
-
Fisher M, Kroon JTM, Martindale W, Stuitje AR, Slabas AR, Rafferty JB. 2000. The X-ray structure of Brassica napus
${\beta}$ -keto acyl carrier protein reductase and its implications for substrate binding and catalysis. Structure 8: 339-347. https://doi.org/10.1016/S0969-2126(00)00115-5 - Birge CH, Vagelos PR. 1972. Acyl carrier protein. XVI. Intermediate reactions of unsaturated fatty acid synthesis in Escherichia coli and studies of fab B mutants. J. Biol. Chem. 247: 4921-4929. https://doi.org/10.1016/S0021-9258(19)44919-3
- Prelog V. 1964. Specification of the stereospecificity of some oxidoreductases by diamond lattice sections. Pure Appl. Chem. 9: 12. https://doi.org/10.1351/pac196409010119
- Huisman GW, Liang J, Krebber A. 2010. Practical chiral alcohol manufacture using ketoreductases. Curr. Opin. Chem. Biol. 14: 122-129. https://doi.org/10.1016/j.cbpa.2009.12.003
- Tasnádi G, Hall M. 2013. Relevant practical applications of bioreduction processes in the synthesis of active pharmaceutical ingredients. Synth. Methods Biol. Act. Mol. 329-374.
- Liu Y, Tang T-X, Pei X-Q, Zhang C, Wu Z-L. 2014. Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly efficient anti-Prelog reduction of 3, 5-bis (trifluoromethyl) acetophenone. J. Mol. Catal. B Enzym. 102: 1-8. https://doi.org/10.1016/j.molcatb.2014.01.009
-
Ratovelomanana-Vidal V, Girard C, Touati R, Tranchier J, Hassine BB, Genet J. 2003. Enantioselective hydrogenation of
${\beta}$ -keto esters using chiral diphosphine-ruthenium complexes: optimization for academic and industrial purposes and synthetic applications. Adv. Synth. Catal. 345: 261-274. https://doi.org/10.1002/adsc.200390021 - Takehara J, Qu JP, Kanno K, Kawabata H, Dekishima Y, Ueda M, et al. 2004. 3-Hydroxy-3-(2-Thienyl)Propionamide Compound, Process For Producing The Same, And Process For Producing 3-Amino-1-(2-Thienyl)-1-Propanol Compound Therefrom.
- Boulet SL, Filla SA, Gallagher PT, Hudziak KJ, Johansson AM, Karanjawala RE, et al. 2004. Propanamine derivatives as serotonin and norepinephrine reuptake inhibitors.
- Jung J, Park HJ, Uhm KN, Kim D, Kim HK. 2010. Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: enantioselectivity and enzyme-substrate docking studies. Biochim. Biophys. Acta 1804: 1841-1849. https://doi.org/10.1016/j.bbapap.2010.06.011
- Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, et al. 2003. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem. Biol. Interact. 143-144: 247-253. https://doi.org/10.1016/S0009-2797(02)00164-3
- Duax WL, Huether R, Pletnev V, Umland TC, Weeks CM. 2009. Divergent evolution of a Rossmann fold and identification of its oldest surviving ancestor. Int. J. Bioinform. Res. Appl. 5: 280-294. https://doi.org/10.1504/IJBRA.2009.026420
- Keller B, Volkmann A, Wilckens T, Moeller G, Adamski J. 2006. Bioinformatic identification and characterization of new members of short-chain dehydrogenase/reductase superfamily. Mol. Cell. Endocrinol. 248: 56-60. https://doi.org/10.1016/j.mce.2005.10.025
- Kallberg Y, Oppermann U, Jornvall H, Persson B. 2002. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Sci. 11: 636-641. https://doi.org/10.1110/ps.26902
- Rafferty JB, Simon JW, Baldock C, Artymiuk PJ, Baker PJ, Stuitje AR, et al. 1995. Common themes in redox chemistry emerge from the X-ray structure of oilseed rape (Brassica napus) enoyl acyl carrier protein reductase. Structure 3: 927-938. https://doi.org/10.1016/S0969-2126(01)00227-1
- Shimakata T, Stumpf PK. 1982. Purification and characterizations of beta-Ketoacyl-[acyl-carrier-protein] reductase, betahydroxyacyl-[ acyl-carrier-protein] dehydrase, and enoyl-[acylcarrier-protein] reductase from Spinacia oleracea leaves. Arch. Biochem. Biophys. 218: 77-91. https://doi.org/10.1016/0003-9861(82)90323-X
- Kavanagh KL, Jornvall H, Persson B, Oppermann U. 2008. Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell. Mol. Life Sci. 65: 3895-3906. https://doi.org/10.1007/s00018-008-8588-y
- Kim TS, Patel SK, Selvaraj C, Jung WS, Pan CH, Kang YC, et al. 2016. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Sci. Rep. 6: 33438. https://doi.org/10.1038/srep33438
- Cui D, Zhang L, Yao Z, Liu X, Lin J, Yuan YA, et al. 2013. Computational design of short-chain dehydrogenase Gox2181 for altered coenzyme specificity. J. Biotechnol. 167: 386-392. https://doi.org/10.1016/j.jbiotec.2013.07.029
- Sheldon PS, Kekwick RG, Smith CG, Sidebottom C, Slabas AR. 1992. 3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus). Biochim. Biophys. Acta 1120: 151-159. https://doi.org/10.1016/0167-4838(92)90263-D
- Fisher M, Kroon JT, Martindale W, Stuitje AR, Slabas AR, Rafferty JB. 2000. The X-ray structure of Brassica napus beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis. Structure 8: 339-347. https://doi.org/10.1016/S0969-2126(00)00115-5
-
Ramachandran P, Jagtap SS, Patel SKS, Li J, Chan Kang Y, Lee J-K. 2016. Role of the non-conserved amino acid asparagine 285 in the glycone-binding pocket of Neosartorya fischeri
${\beta}$ -glucosidase. RSC Adv. 6: 48137-48144. https://doi.org/10.1039/c5ra28017f - Selvaraj C, Krishnasamy G, Jagtap SS, Patel SKS, Dhiman SS, Kim T-S, et al. 2016. Structural insights into the binding mode of d-sorbitol with sorbitol dehydrogenase using QMpolarized ligand docking and molecular dynamics simulations. Biochem. Eng. J. 114: 244-256. https://doi.org/10.1016/j.bej.2016.07.008
- Cai P, An M, Xu L, Xu S, Hao N, Li Y, et al. 2012. Development of a substrate-coupled biocatalytic process driven by an NADPH-dependent sorbose reductase from Candida albicans for the asymmetric reduction of ethyl 4-chloro-3-oxobutanoate. Biotechnol. Lett. 34: 2223-2227. https://doi.org/10.1007/s10529-012-1029-x
- Wang LJ, Li CX, Ni Y, Zhang J, Liu X, Xu JH. 2011. Highly efficient synthesis of chiral alcohols with a novel NADHdependent reductase from Streptomyces coelicolor. Bioresour. Technol. 102: 7023-7028. https://doi.org/10.1016/j.biortech.2011.04.046
- Zhao FJ, Pei XQ, Ren ZQ, Wu ZL. 2016. Rapid asymmetric reduction of ethyl 4-chloro-3-oxobutanoate using a thermostabilized mutant of ketoreductase ChKRED20. Appl. Microbiol. Biotechnol. 100: 3567-3575. https://doi.org/10.1007/s00253-015-7200-2
- Brem J, Liljeblad A, Paizs C, Toşa MI, Irimie F-D, Kanerva LT. 2011. Lipases A and B from Candida antarctica in the enantioselective acylation of ethyl 3-heteroaryl-3-hydroxypropanoates: aspects on the preparation and enantiopreference. Tetrahedron Asymmetry. 22: 315-322. https://doi.org/10.1016/j.tetasy.2011.01.027
- Soni P, Banerjee U. 2005. Biotransformations for the production of the chiral drug (S)-Duloxetine catalyzed by a novel isolate of Candida tropicalis. Appl. Microbiol. Biotechnol. 67: 771-777. https://doi.org/10.1007/s00253-004-1870-5