• Title/Summary/Keyword: 3-oxoacyl-acyl-carrier-protein reductase

Search Result 1, Processing Time 0.017 seconds

Stereoselective Bioreduction of Ethyl 3-Oxo-3-(2-Thienyl) Propanoate Using the Short-Chain Dehydrogenase/Reductase ChKRED12

  • Ren, Zhi-Qiang;Liu, Yan;Pei, Xiao-Qiong;Wu, Zhong-Liu
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1769-1776
    • /
    • 2019
  • Ethyl (S)-3-hydroxy-3-(2-thienyl) propanoate ((S)-HEES) acts as a key chiral intermediate for the blockbuster antidepressant drug duloxetine, which can be achieved via the stereoselective bioreduction of ethyl 3-oxo-3-(2-thienyl) propanoate (KEES) that contains a 3-oxoacyl structure. The sequences of the short-chain dehydrogenase/reductases from Chryseobacterium sp. CA49 were analyzed, and the putative 3-oxoacyl-acyl-carrier-protein reductase, ChKRED12, was able to stereoselectively catalyze the NADPH-dependent reduction to produce (S)-HEES. The reductase activity of ChKRED12 towards other substrates with 3-oxoacyl structure were confirmed with excellent stereoselectivity (>99% enantiomeric excess) in most cases. When coupled with a cofactor recycling system using glucose dehydrogenase, the ChKRED12 was able to catalyze the complete conversion of 100 g/l KEES within 12 h, yielding the enantiopure product with >99% ee, showing a remarkable potential to produce (S)-HEES.