DOI QR코드

DOI QR Code

Mitigating Antibiotic Resistance at the Livestock-Environment Interface: A Review

  • Ma, Zhengxin (Emerging Pathogens Institute, University of Florida) ;
  • Lee, Shinyoung (Emerging Pathogens Institute, University of Florida) ;
  • Jeong, K. Casey (Emerging Pathogens Institute, University of Florida)
  • Received : 2019.09.17
  • Accepted : 2019.10.30
  • Published : 2019.11.28

Abstract

The rise of antimicrobial resistance (AR) is a major threat to global health. The food animal industry contributes to the increasing occurrence of AR. Multiple factors can affect the occurrence and dissemination of AR in the animal industry, including antibiotic use and farm management. Many studies have focused on how the use of antibiotics in food-producing animals has led to the development of AR. However, a few effective mitigating strategies for AR have been developed in food-producing animals, especially those exposed to the environment. The aim of this review is to summarize potential strategies applicable for mitigating AR at the environment-livestock interface.

Keywords

References

  1. CDC. 2013. Antibiotic resistance threats in the United States. Available from https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed 03/21/19
  2. O'Neil J. 2016. Book review: Tackling drug-resistant infections globally: final report and recommendations.
  3. WHO. 2017. WHO publishes list of bacteria for which new antibiotics are urgently needed. Available from https://www.who.int/news-room/detail/27-02-2017-who-publisheslist-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed 03/20.
  4. van den Bogaard AE, Stobberingh EE. 2000. Epidemiology of resistance to antibiotics - Links between animals and humans. Int. J. Antimicrob. Agents 14: 327-335. https://doi.org/10.1016/S0924-8579(00)00145-X
  5. Cully M. 2014. Public health: The politics of antibiotics. Nature 509: S16-S17. https://doi.org/10.1038/509S16a
  6. Cuong NV, Padungtod P, Thwaites G, Carrique-Mas JJ. 2018. Antimicrobial usage in animal production: a review of the literature with a focus on low- and middle-income countries. Antibiotics-Basel. 7: E75.
  7. Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, et al. 2019. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 365: 1266.
  8. Markland S, Weppelmann TA, Ma Z, Lee S, Mir RA, Teng L, et al. 2019. High Prevalence of cefotaxime resistant bacteria in grazing beef cattle: a cross sectional study. Front. Microbiol. 10: 176. https://doi.org/10.3389/fmicb.2019.00176
  9. Alam MJ, Zurek L. 2004. Association of Escherichia coli O157:H7 with houseflies on a cattle farm. Appl. Environ. Microbiol. 70: 7578-7580. https://doi.org/10.1128/AEM.70.12.7578-7580.2004
  10. Hille K, Ruddat I, Schmid A, Hering J, Hartmann M, von Munchhausen C, et al. 2017. Cefotaxime-resistant E. coli in dairy and beef cattle farms-Joint analyses of two crosssectional investigations in Germany. Prev. Vet. Med. 142: 39-45. https://doi.org/10.1016/j.prevetmed.2017.05.003
  11. Schmid A, Hormansdorfer S, Messelhausser U, Kasbohrer A, Sauter-Louis C, Mansfeld R. 2013. Prevalence of extendedspectrum beta-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms. Appl. Environ. Microbiol. 79: 3027-3032. https://doi.org/10.1128/AEM.00204-13
  12. Gerding DN. 2001. The search for good antimicrobial stewardship. Jt Comm. J. Qual. Improv. 27: 403-404.
  13. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 112: 5649-5654.
  14. Tang KL, Caffrey NP, Nobrega DB, Cork SC, Ronksley PE, Barkema HW, et al. 2017. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. Lancet Planet. Health 1: e316-e327. https://doi.org/10.1016/S2542-5196(17)30141-9
  15. Knapp CW, McCluskey SM, Singh BK, Campbell CD, Hudson G, Graham DW. 2011. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS One 6: e27300. https://doi.org/10.1371/journal.pone.0027300
  16. Jacob ME, Fox JT, Nagaraja TG, Drouillard JS, Amachawadi RG, Narayanan SK. 2010. Effects of feeding elevated concentrations of copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle. Foodborne Pathog. Dis. 7: 643-648. https://doi.org/10.1089/fpd.2009.0401
  17. Berg J, Tom-Petersen A, Nybroe O. 2005. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett. Appl. Microbiol. 40: 146-151. https://doi.org/10.1111/j.1472-765X.2004.01650.x
  18. Teng L, Lee S, Ginn A, Markland SM, Mir RA, DiLorenzo N, et al. 2019. Genomic comparison reveals natural occurrence of clinically relevant multidrug-resistant extended-spectrumlactamase-producing Escherichia coli strains. Appl. Environ. Microbiol. 85: e03030-18.
  19. Mir RA, Weppelmann TA, Johnson JA, Archer D, Morris JG, Jr., Jeong KC. 2016. Identification and characterization of cefotaxime resistant bacteria in beef cattle. PLoS One 11: e0163279. https://doi.org/10.1371/journal.pone.0163279
  20. Mir RA, Weppelmann TA, Teng L, Kirpich A, Elzo MA, Driver JD, et al. 2018. Colonization dynamics of cefotaxime resistant bacteria in beef cattle raised without cephalosporin antibiotics. Front. Microbiol. 9: 500. https://doi.org/10.3389/fmicb.2018.00500
  21. Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74: 417-433. https://doi.org/10.1128/MMBR.00016-10
  22. Di Labio E, Regula G, Steiner A, Miserez R, Thomann A, Ledergerber U. 2007. Antimicrobial resistance in bacteria from Swiss veal calves at slaughter. Zoonoses Public Health 54: 344-352. https://doi.org/10.1111/j.1863-2378.2007.01071.x
  23. Usui M, Iwasa T, Fukuda A, Sato T, Okubo T, Tamura Y. 2013. The role of flies in spreading the extended-spectrum beta-lactamase gene from cattle. Microb. Drug Resist. 19: 415-420. https://doi.org/10.1089/mdr.2012.0251
  24. Zurek L, Ghosh A. 2014. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microbiol. 80: 3562-3567. https://doi.org/10.1128/AEM.00600-14
  25. Zhang XX, Zhang T, Fang HH. 2009. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 82: 397-414. https://doi.org/10.1007/s00253-008-1829-z
  26. Prado T, Pereira WC, Silva DM, Seki LM, Carvalho AP, Asensi MD. 2008. Detection of extended-spectrum betalactamase-producing Klebsiella pneumoniae in effluents and sludge of a hospital sewage treatment plant. Lett. Appl. Microbiol. 46: 136-141. https://doi.org/10.1111/j.1472-765X.2007.02275.x
  27. Jiang H, Zhang D, Xiao S, Geng C, Zhang X. 2013. Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, south China. Environ. Sci. Pollut. Res. Int. 20: 9075-9083. https://doi.org/10.1007/s11356-013-1924-2
  28. Pignato S, Coniglio MA, Faro G, Weill FX, Giammanco G. 2009. Plasmid-mediated multiple antibiotic resistance of Escherichia coli in crude and treated wastewater used in agriculture. J. Water Health 7: 251-258. https://doi.org/10.2166/wh.2009.019
  29. Galvin S, Boyle F, Hickey P, Vellinga A, Morris D, Cormican M. 2010. Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Appl. Environ. Microbiol. 76: 4772-4779. https://doi.org/10.1128/AEM.02898-09
  30. Volkmann H, Schwartz T, Bischoff P, Kirchen S, Obst U. 2004. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J. Microbiol. Methods 56: 277-286. https://doi.org/10.1016/j.mimet.2003.10.014
  31. Sullivan JM, Murieta R, Crocco GA. 2002. Comprehensive waste treatment system and related methods for animal feeding operations to effectively recover waste solids for beneficial re-use and for treatment of wastewater for nutrient removal and recycle, re-use or discharge. 09/837,924
  32. Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H. 2016. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 150: 702-714. https://doi.org/10.1016/j.chemosphere.2015.12.084
  33. Dodd MC. 2012. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. J. Environ. Monit. 14: 1754-1771. https://doi.org/10.1039/c2em00006g
  34. Dires S, Birhanu T, Ambelu A, Sahilu G. 2018. Antibiotic resistant bacteria removal of subsurface flow constructed wetlands from hospital wastewater. J. Environ. Chem. Eng. 6: 4265-4272. https://doi.org/10.1016/j.jece.2018.06.034
  35. Lamori JG, Xue J, Rachmadi AT, Lopez GU, Kitajima M, Gerba CP, et al. 2019. Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands. Environ. Sci. Pollut. Res. Int. 26: 10188-10197. https://doi.org/10.1007/s11356-019-04468-9
  36. Chen J, Liu YS, Su HC, Ying GG, Liu F, Liu SS, et al. 2015. Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated constructed wetland. Environ. Sci. Pollut. Res. 22: 1794-1803. https://doi.org/10.1007/s11356-014-2800-4
  37. Chen J, Wei XD, Liu YS, Ying GG, Liu SS, He LY, et al. 2016. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading. Sci. Total Environ. 565: 240-248. https://doi.org/10.1016/j.scitotenv.2016.04.176
  38. Qiu ZG, Yu YM, Chen ZL, Jin M, Yang D, Zhao ZG, et al. 2012. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc. Natl. Acad. Sci. USA 109: 4944-4949.
  39. Gilliver MA, Bennett M, Begon M, Hazel SM, Hart CA. 1999. Enterobacteria: antibiotic resistance found in wild rodents. Nature 401: 233-234. https://doi.org/10.1038/45724
  40. Greig J, Rajic A, Young I, Mascarenhas M, Waddell L, LeJeune J. 2015. A scoping review of the role of wildlife in the transmission of bacterial pathogens and antimicrobial resistance to the food chain. Zoonoses Public Health. 62: 269-284. https://doi.org/10.1111/zph.12147
  41. Judge J, McDonald RA, Walker N, Delahay RJ. 2011. Effectiveness of biosecurity measures in preventing badger visits to farm buildings. PLoS One 6: e28941. https://doi.org/10.1371/journal.pone.0028941
  42. Gehring TM, VerCauteren KC, Provost ML, Cellar AC. 2010. Utility of livestock-protection dogs for deterring wildlife from cattle farms. Wildlife Res. 37: 715-721. https://doi.org/10.1071/WR10023
  43. Alcala L, Alonso CA, Simon C, Gonzalez-Esteban C, Oros J, Rezusta A, et al. 2016. Wild birds, frequent carriers of extendedspectrum beta-lactamase (ESBL) producing Escherichia coli of CTX-M and SHV-12types. Microb. Ecol. 72: 861-869. https://doi.org/10.1007/s00248-015-0718-0
  44. Gortazar C, Diez-Delgado I, Barasona JA, Vicente J, De La Fuente J, Boadella M. 2014. The wild side of disease control at the wildlife-livestock-human interface: a review. Front. Vet. Sci. 1: 27.
  45. Sorensen A, van Beest FM, Brook RK. 2014. Impacts of wildlife baiting and supplemental feeding on infectious disease transmission risk: a synthesis of knowledge. Prev. Vet. Med. 113: 356-363. https://doi.org/10.1016/j.prevetmed.2013.11.010
  46. Miller R, Kaneene JB, Fitzgerald SD, Schmitt SM. 2003. Evaluation of the influence of supplemental feeding of white-tailed deer (Odocoileus virginianus) on the prevalence of bovine tuberculosis in the Michigan wild deer population. J. Wildl Dis. 39: 84-95. https://doi.org/10.7589/0090-3558-39.1.84
  47. Abdou M, Frankena K, O'Keeffe J, Byrne AW. 2016. Effect of culling and vaccination on bovine tuberculosis infection in a European badger (Meles meles) population by spatial simulation modelling. Prev. Vet. Med. 125: 19-30. https://doi.org/10.1016/j.prevetmed.2015.12.012
  48. Boadella M, Vicente J, Ruiz-Fons F, de la Fuente J, Gortazar C. 2012. Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky's disease virus. Prev. Vet. Med. 107: 214-221. https://doi.org/10.1016/j.prevetmed.2012.06.001
  49. Woodroffe R, Donnelly CA, Jenkins HE, Johnston WT, Cox DR, Bourne FJ, et al. 2006. Culling and cattle controls influence tuberculosis risk for badgers. Proc. Natl. Acad. Sci. USA 103: 14713-14717. https://doi.org/10.1073/pnas.0606251103
  50. Venglovsky J, Sasakova N, Placha I. 2009. Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application. Bioresour. Technol. 100: 5386-5391. https://doi.org/10.1016/j.biortech.2009.03.068
  51. Heuer H, Schmitt H, Smalla K. 2011. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 14: 236-243. https://doi.org/10.1016/j.mib.2011.04.009
  52. Saunders O, Harrison J, Fortuna AM, Whitefield E, Bary A. 2011. Effect of anaerobic digestion and application method on the presence and survivability of E. coli and fecal coliforms in dairy waste applied to soil. Water Air Soil Pollution 223: 1055-1063. https://doi.org/10.1007/s11270-011-0923-5
  53. Fan P, Nelson CD, Driver JD, Elzo MA, Jeong KC. 2019. Animal breed composition is associated with the hindgut microbiota structure and beta-lactam resistance in the multibreed Angus-Brahman Herd. Front. Microbiol. 10: 1846. https://doi.org/10.3389/fmicb.2019.01846
  54. Munk P, Knudsen BE, Lukjancenko O, Duarte ASR, Van Gompel L, Luiken REC, et al. 2018. Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat. Microbiol. 3: 898-908. https://doi.org/10.1038/s41564-018-0192-9
  55. Liu J, Taft DH, Maldonado-Gomez MX, Johnson D, Treiber ML, Lemay DG, et al. 2019. The fecal resistome of dairy cattle is associated with diet during nursing. Nat. Commun. 10: 4406. https://doi.org/10.1038/s41467-018-06543-0
  56. Singh R, de Groot PF, Geerlings SE, Hodiamont CJ, Belzer C, Berge I, et al. 2018. Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: a proof of principle study. BMC Res. Notes 11: 190. https://doi.org/10.1186/s13104-018-3293-x
  57. Bilinski J, Grzesiowski P, Sorensen N, Madry K, Muszynski J, Robak K, et al. 2017. Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, singlecenter study. Clin. Infect. Dis. 65: 364-370. https://doi.org/10.1093/cid/cix252
  58. Gaggia F, Mattarelli P, Biavati B. 2010. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 141 Suppl 1: S15-28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031
  59. Uyeno Y, Shigemori S, Shimosato T. 2015. Effect of probiotics/prebiotics on cattle health and productivity. Microb. Environ. 30: 126-132. https://doi.org/10.1264/jsme2.ME14176
  60. Lin DM, Koskella B, Lin HC. 2017. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest Pharmacol Ther. 8: 162-173. https://doi.org/10.4292/wjgpt.v8.i3.162
  61. Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, et al. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect. Immun. 70: 204-210. https://doi.org/10.1128/iai.70.1.204-210.2002
  62. Wang J, Hu B, Xu M, Yan Q, Liu S, Zhu X, et al. 2006. Therapeutic effectiveness of bacteriophages in the rescue of mice with extended spectrum beta-lactamase-producing Escherichia coli bacteremia. Int. J. Mol. Med. 17: 347-355.
  63. Wang J, Hu B, Xu MC, Yan Q, Liu SY, Zhu XH, et al. 2006. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int. J. Mol. Med. 17: 309-317.
  64. Pastagia M, Schuch R, Fischetti VA, Huang DB. 2013. Lysins: the arrival of pathogen-directed anti-infectives. J. Med. Microbiol. 62: 1506-1516. https://doi.org/10.1099/jmm.0.061028-0
  65. de la Fuente J, Almazan C, Canales M, Perez de la Lastra JM, Kocan KM, Willadsen P. 2007. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim. Health Res. Rev. 8: 23-28. https://doi.org/10.1017/S1466252307001193
  66. Edwards TA. 2010. Control methods for bovine respiratory disease for feedlot cattle. Vet. Clin. North Am. Food Anim. Pract. 26: 273-284. https://doi.org/10.1016/j.cvfa.2010.03.005
  67. Checkley SL, Janzen ED, Campbell JR, McKinnon JJ. 2005. Efficacy of vaccination against Fusobacterium necrophorum infection for control of liver abscesses and footrot in feedlot cattle in western Canada. Can. Vet J. 46: 1002-1007.
  68. Amachawadi RG, Nagaraja TG. 2016. Liver abscesses in cattle: A review of incidence in Holsteins and of bacteriology and vaccine approaches to control in feedlot cattle. J. Anim. Sci. 94: 1620-1632. https://doi.org/10.2527/jas.2015-0261
  69. Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250. https://doi.org/10.1038/nrmicro1098
  70. Rodriguez-Rojas A, Makarova O, Rolff J. 2014. Antimicrobials, stress and mutagenesis. PLoS Pathog. 10: e1004445. https://doi.org/10.1371/journal.ppat.1004445
  71. Lazar V, Martins A, Spohn R, Daruka L, Grezal G, Fekete G, et al. 2018. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat. Microbiol. 3: 718-731. https://doi.org/10.1038/s41564-018-0164-0
  72. Yu HT, Ding XL, Li N, Zhang XY, Zeng XF, Wang S, et al. 2017. Dietary supplemented antimicrobial peptide microcin J25 improves the growth performance, apparent total tract digestibility, fecal microbiota, and intestinal barrier function of weaned pigs. J. Anim. Sci. 95: 5064-5076. https://doi.org/10.2527/jas2017.1494
  73. Wang S, Zeng X, Yang Q, Qiao S. 2016. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci. 17: E603.
  74. Ma Z, Kim D, Adesogan AT, Ko S, Galvao K, Jeong KC. 2016. Chitosan microparticles exert broad-spectrum antimicrobial activity against antibiotic-resistant micro-organisms without increasing resistance. ACS Appl. Mater. Interfaces 8: 10700-10709. https://doi.org/10.1021/acsami.6b00894
  75. Jeong KC, Kang MY, Kang J, Baumler DJ, Kaspar CW. 2011. Reduction of Escherichia coli O157:H7 shedding in cattle by addition of chitosan microparticles to feed. Appl. Environ. Microbiol. 77: 2611-2616. https://doi.org/10.1128/AEM.02587-10
  76. Jeon SJ, Ma Z, Kang M, Galvao KN, Jeong KC. 2016. Application of chitosan microparticles for treatment of metritis and in vivo evaluation of broad spectrum antimicrobial activity in cow uteri. Biomaterials 110: 71-80. https://doi.org/10.1016/j.biomaterials.2016.09.016
  77. Fang L, Wolmarans B, Kang M, Jeong KC, Wright AC. 2015. Application of chitosan microparticles for reduction of Vibrio species in seawater and live oysters (Crassostrea virginica). Appl. Environ. Microbiol. 81: 640-647. https://doi.org/10.1128/AEM.02856-14
  78. Tyers M, Wright GD. 2019. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 17: 141-155. https://doi.org/10.1038/s41579-018-0141-x
  79. Katoh T, Sakai J, Ogata Y, Urushiyama Y. 1996. Effect of a combination of antimicrobial agents for the treatment of respiratory disease in cattle. J. Vet. Med. Sci. 58: 783-785. https://doi.org/10.1292/jvms.58.783
  80. Opatowski L, Guillemot D, Boelle PY, Temime L. 2011. Contribution of mathematical modeling to the fight against bacterial antibiotic resistance. Curr. Opin. Infect. Dis. 24: 279-287. https://doi.org/10.1097/QCO.0b013e3283462362
  81. Cazer CL, Volkova VV, Grohn YT. 2014. Use of pharmacokinetic modeling to assess antimicrobial pressure on enteric bacteria of beef cattle fed chlortetracycline for growth promotion, disease control, or treatment. Foodborne Pathog. Dis. 11: 403-411. https://doi.org/10.1089/fpd.2013.1677
  82. Volkova VV, Lanzas C, Lu Z, Grohn YT. 2012. Mathematical model of plasmid-mediated resistance to ceftiofur in commensal enteric Escherichia coli of cattle. PLoS One 7: e36738. https://doi.org/10.1371/journal.pone.0036738

Cited by

  1. Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance vol.46, pp.1, 2019, https://doi.org/10.1080/1040841x.2020.1715339
  2. Prevalence and Molecular Characteristics of Extended-Spectrum and AmpC β-Lactamase Producing Escherichia coli in Grazing Beef Cattle vol.10, 2020, https://doi.org/10.3389/fmicb.2019.03076
  3. Microflora in the Reproductive Tract of Cattle: A Review vol.10, pp.6, 2019, https://doi.org/10.3390/agriculture10060232
  4. Synergism of the Combination of Traditional Antibiotics and Novel Phenolic Compounds against Escherichia coli vol.9, pp.10, 2019, https://doi.org/10.3390/pathogens9100811
  5. Distinct Pattern of NPY in Gastro-Entero-Pancreatic System of Goat Kids Fed with a New Standardized Red Orange and Lemon Extract (RLE) vol.11, pp.2, 2019, https://doi.org/10.3390/ani11020449
  6. Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission vol.53, pp.3, 2019, https://doi.org/10.1038/s12276-021-00569-z
  7. Antibiotics or No Antibiotics, That Is the Question: An Update on Efficient and Effective Use of Antibiotics in Dental Practice vol.10, pp.5, 2019, https://doi.org/10.3390/antibiotics10050550
  8. Phage Therapy in Livestock and Companion Animals vol.10, pp.5, 2019, https://doi.org/10.3390/antibiotics10050559
  9. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain vol.19, pp.6, 2019, https://doi.org/10.2903/j.efsa.2021.6651