DOI QR코드

DOI QR Code

Study of the Flush Air Data Sensing System for Subsonic and Supersonic Flows

아음속 및 초음속 유동의 플러시 대기자료 측정장치 연구

  • Received : 2019.09.19
  • Accepted : 2019.11.19
  • Published : 2019.12.01

Abstract

Flush Air Data Sensing system (FADS) estimates air data states using pressure data measured at the surface of flight vehicles. The FADS system does not require intrusive probes, so it is suitable for high performance aircrafts, stealth vehicles, and hypersonic flight vehicles. In this study, calibration procedures and solution algorithms of the FADS for a sphere-cone shape vehicle are presented for the prediction of air data from subsonic to supersonic flights. Five flush pressure ports are arranged on the surface of nose section in order to measure surface pressure data. The algorithm selects the concept of separation for the prediction of flow angles and the prediction of pressure related variables, and it uses the pressure model which combines the potential flow solution for a subsonic flow with the modified Newtonian flow theory for a hypersonic flow. The CFD code which solves Euler equations is developed and used for the construction of calibration pressure data in the Mach number range of 0.5~3.0. Tests are conducted with various flight conditions for flight Mach numbers in the range of 0.6~3.0 and flow angles in the range of -10°~+10°. Air data such as angle of attack, angle of sideslip, Mach number, and freestream static pressure are predicted and their accuracies are analyzed by comparing predicted data with reference data.

플러시 대기자료 측정장치는 비행체 표면에서 측정되는 압력 데이터를 이용하여 대기자료를 예측한다. FADS는 돌출된 프로브가 없으므로 고성능 항공기, 스텔스 비행체 및 극초음속 비행체에 적합하다. 본 논문에서는 구-원추 형상을 갖는 비행체에 대해서 아음속부터 초음속 비행까지 대기자료를 예측할 수 있는 FADS의 교정 절차와 계산 알고리즘을 제시한다. 표면 압력 데이터 측정을 위해 노즈부 표면에 5개 플러시 압력공들을 마련하였다. 유동각 예측과 압력 관련 변수의 예측을 분리하는 개념이며, 아음속 유동의 포텐셜 유동해와 극초음속 유동의 수정 뉴톤식을 결합한 압력모델을 사용한다. 교정 압력 데이터는 Euler 방정식을 푸는 전산유체역학 코드를 만들어서 마흐수 0.5 ~ 3.0의 범위에서 구축하였다. 비행 마흐 수 0.6~3.0, 받음각과 옆미끄럼각은 각각 -10° ~ +10°의 범위에서 여러 비행조건에 대해서 테스트를 수행하였다. 예측된 대기자료는 받음각, 옆미끄럼각, 마흐수, 자유류 정압이며 참고 데이터와 비교하여 정확도를 분석하였다.

Keywords

References

  1. Whitmore, S. A., and Moes, T. R., "Preliminary Results From a Subsonic High Angle of Attack Flush Airdata Sensing System: Design, Calibration, and Flight Test Evaluation," NASA TM-101713, 1990.
  2. Whitmore, S. A., Cobleigh, B. R., and Haering, E. A., "Design and Calibration of the X-33 Flush Airdata Sensing System," NASA TM-206540, 1998.
  3. Cobleigh, B. R., Whitmore, S. A., and Haering, E. A., "Flush Airdata Sensing System Calibration Procedures and Results for Blunt Forebodies," NASA TP-209012, 1999.
  4. Whitmore, S. A., Cobleigh, B. R., and Haering, E. A., "Stable Algorithm for Estimating Airdata from Flush Surface Pressure Measurements," U.S. Patent No. 6253166, June 2001.
  5. Ellsworth, J. C., and Whitmore, S. A., "Simulation of a Flush Air Data System for Transatmospheric Vehicles," Journal of Spacecraft and Rockets, Vol. 45, No. 4, 2008, pp. 716-732. https://doi.org/10.2514/1.33541
  6. Chen, G., Chen, B., Li, P., Bai, P., and Ji, C., "Study on Algorithms of Flush Air Data Sensing System for Hypersonic Vehicle," Procedia Engineering, Vol. 99, 2015, pp. 860-865. https://doi.org/10.1016/j.proeng.2014.12.613
  7. Liu, Y., and Xiao, D., "Trade-off Design of Measurement Tap configuration and Solving Model for a Flush Air Data Sensing System," Measurement, Vol. 90, 2016, pp. 278-285. https://doi.org/10.1016/j.measurement.2016.04.068
  8. Lee, C. H., Park, Y. M., Chang, B. H., and Lee, Y. G., "Calibration and Flight Test Result of Air Data Sensing System using Flush Pressure Ports," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 45, No. 7, 2017, pp. 531-538. https://doi.org/10.5139/JKSAS.2017.45.7.531
  9. Lee, C. H., "Calibration Procedures and Algorithms for a Blunt Body Flush Air Data Sensing System at Subsonic and Supersonic Flows," 2019 Asian-Pacific Conference on Aerospace Technology and Science, Hsin Chu, Taiwan, August, 2019.
  10. Kjelgaard, S. O., "Theoretical Derivation and Calibration Technique for a Hemispherical Tipped, Five-Hole Probe," NASA TM 4047, 1988.
  11. Houtman, E. M., and Bannink, W. J., "The Calibration and Measuring Procedure of a Five-hole Hemispherical Head Probe in Compressible Flow," Report LR-585, Delft University of Technology, 1989.
  12. Gonsalez, J. C., and Arrington, E. A., "Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel," NASA CR-202330, 1999.
  13. Johanson, E. S., Rediniotis, O. K., and Jones, G., "The Compressible Calibration of Miniature Multi-Hole Probes," Transactions of the ASME, Vol. 123, March 2001, pp. 128-138.
  14. Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2, Computational Methods for Inviscid and Viscous Flows, John Wiley & Sons, 1984.
  15. Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin, 1997.
  16. Quirk, J., "A contribution to the great Riemann solver debate," International Journal of Numerical Methods in Fluid, Vol. 18, 1994, pp. 555-574. https://doi.org/10.1002/fld.1650180603
  17. Kang, H., Kim, K., and Lee, D., "A new approach of a limiting process for multidimensional flows," Journal of Computational Physics, Vol. 229, No. 19, 2010, pp. 7102-7128. https://doi.org/10.1016/j.jcp.2010.06.001
  18. Currie, I. G., Fundamental Mechanics of Fluids, McGraw-Hill, Inc., New York, 1974.
  19. Anderson, J. D., Jr., Hypersonic and High Temperature Gas Dynamics, McGraw-Hill, Inc., New York, 1989.
  20. Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. 1, The Ronald Press Company, New York, 1953.