DOI QR코드

DOI QR Code

The Spatial and Vertical Variations of Metal Pollution in Sediments after Tidal Power Plant Operation in Shihwa Lake

시화호 조력발전소 가동으로 인한 퇴적물 내 중금속 오염 특성 변화

  • LEE, JIHYUN (Marine Environmental Research Center, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • JEONG, HYERYEONG (Marine Environmental Research Center, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • CHOI, JIN YOUNG (Marine Environmental Research Center, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • RA, KONGTAE (Marine Environmental Research Center, Korea Institute of Ocean Science & Technology (KIOST))
  • 이지현 (한국해양과학기술원 해양환경연구센터) ;
  • 정혜령 (한국해양과학기술원 해양환경연구센터) ;
  • 최진영 (한국해양과학기술원 해양환경연구센터) ;
  • 나공태 (한국해양과학기술원 해양환경연구센터)
  • Received : 2019.09.25
  • Accepted : 2019.10.25
  • Published : 2019.11.30

Abstract

In this study, the heavy metal analysis in sediments (surface sediments, sediments cores and settling particles) from Shihwa Lake has been carried out to evaluate the changes of metal pollution levels in sediments after the operation of Tidal Power Plant (TPP). The average concentrations of metals in surface sediments sampled in 2015 were 8% (Cd)~31% (Zn, Hg) lower than in 2009 before TPP operation. Results of calculating the pollution load index (PLI) with 8 metals, the PLI value in 2015 showed a 18% decrease compared to 2009. However, Cu, Zn, Pb concentrations of surface sediments in 2015 at the upper region around industrial complex still exceeded the TEL (threshold effect level) values for sediment quality guideline in Korea. After the operation of TPP, the metal contaminated depths were increasing from 15 cm to 30 cm at S6 site and from 8 cm to 20 cm at S7 site, respectively. Our data showed that the mean concentration of heavy metals in core samples decreased but the contaminated depth increased. The average of the total sedimentation flux for particulate matter increased by 3.2 times from 32.5 g/㎡/d in 2009 to 103.5 g/㎡/d in 2015. This showed that the bottom sediments were resuspended by the operation of TPP, resulting in an increase of particulate matter in the water column. These results suggest that the sediments contaminated with heavy metals seem to be resuspended and relocated due to the water current caused by the operation of TPP. Cr, Cu, Zn, Pb and Cd were highly exceeding the TEL values in the upstream region and accumulated more than 40 cm of sediment depth, indicating that heavy metal contamination through industrial activity were still a serious environmental problem of Shihwa Lake. Although the metal pollution of Shihwa Lake has been slightly reduced, the contaminated sediments with heavy metals inside of Shihwa Lake might be discharged to outer sea after the resuspension by TPP operation. It is necessary for the advanced scientific approach and political decision to drastically reduce the heavy metal pollution of the study region.

본 연구에서는 조력발전소 가동 이후 퇴적물 내 공간적 중금속 오염변화 특성을 알아보기 위하여, 2015년 표층퇴적물, 퇴적물 코어, 입자성 침강물질 내 중금속 농도를 분석하고 가동 이전인 2009년과의 비교를 실시하였다. 2015년에 채취한 표층퇴적물 내 중금속의 평균 농도는 조력발전소 가동 이전인 2009년에 비해 8% (Cd)~31% (Zn, Hg) 감소하였다. 본 연구에서 분석된 8개 원소를 모두 포함한 오염부하지수(PLI)를 계산한 결과, 2015년 자료가 2009년에 비해 중금속 오염도가 18% 감소하였다. 하지만 2015년에도 산업단지에 인접한 상류지역에서는 여전히 Cu, Zn, Pb가 주의기준(TEL)을 초과하였다. 조력발전소 가동 이전에 비해 2015년 중금속에 오염된 퇴적 깊이는 S6 정점에서는 15 cm, S7 정점에서는 12 cm 증가하였으나 중금속의 평균농도는 감소하였다. 입자물질의 총 침강속의 평균은 2009년에 32.5 g/㎡/d에서 2015년 103.5 g/㎡/d로 입자의 침강량이 3.2배 높아졌다. 수층의 입자물질 증가는 조력발전소 가동에 따라 저층 퇴적물이 재부유된 것으로 판단된다. 코어 시료에서 오염 퇴적 깊이와 입자물질의 침강속 증가는 조력발전소 가동으로 인해 발생한 해류의 영향으로 저층 퇴적물이 재부유되어 다른 지역으로 이동/퇴적된 사실을 나타내고 있다. 표층퇴적물과 마찬가지로 상류지역 코어에서는 여전히 Cr, Cu, Zn, Pb, Cd이 주의기준을 초과하고 있었으며, 중금속 오염 퇴적물이 40 cm 이상 축적되어 있어 여전히 산업단지를 통한 중금속 오염이 심각한 것으로 나타났다. 조력발전소 가동에 의한 해수 유통량의 증가로 시화호 중금속 오염은 다소 감소하였으나, 산업활동을 통한 중금속의 오염은 여전히 존재하고 있으며 퇴적물 재이동을 통해 오염된 퇴적물이 시화호 외측으로 방류되어 환경 혹은 생태계에 악영향을 미칠 가능성이 있다. 따라서 금속 안정동위원소를 활용한 오염원 추적과 같은 과학적 조사와 오염원을 줄이기 위한 정책적인 결단이 필요한 것으로 판단된다.

Keywords

References

  1. Ashraf, A., E. Saion, E. Gharribshahi, C.K. Yap, H.M. Kamari, M.S. Elias and S.A. Rahman, 2018. Distribution of heavy metals in core marine sediments of coastal east Malaysia by Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Spectroscopy. Appl. Radiat. Isotopes, 132: 222-231. https://doi.org/10.1016/j.apradiso.2017.11.012
  2. Badr, N.B.E., A.A. El-Fiky, A.R. Mostafa and B.A. Al-Mur, 2009. Metal pollution records in core sediments of some Red Sea coastal areas. Kingdom of Saudi Arabia. Environ. Monit. Assess., 155: 509-526. https://doi.org/10.1007/s10661-008-0452-x
  3. Bellucci, I.G., M. Frignani, D., Paolucci, and M. Ravanelli, 2002. Distribution of heavy metals in sediments of the Venice Lagoon: the role of the industrial area. Sci Total Environ., 265: 35-49.
  4. Bruland, K.W., K.K. Bertine, M. Koide and E.D. Goldberg, 1974. History of heavy metal pollution in the southern California coastal zone. Environ. Sci. Technol., 8: 425-432. https://doi.org/10.1021/es60090a01
  5. Chow, T.J., K.W. Bruland, K.K. Bertine, A. Soutar, M. Koide and E.D. Goldberg, 1973. Lead pollution: Records in southern California coastal sediments. Science, 181: 551-552. https://doi.org/10.1126/science.181.4099.551
  6. Gao L., Z. Wang, S. Li and J. Chen, 2018. Bioavailability and toxicity of trace metals (Cd, Cr, Cu, Ni, and Zn) in sediment cores from the Shima River, South China. Chemosphere, 192: 31-42 https://doi.org/10.1016/j.chemosphere.2017.10.110
  7. Goldberg, E.D., V. Hodge, M. Koide and J.J. Griffin, 1976. Metal pollution in Tokyo as record in sediments of the Palace moat. Geochem. J., 10: 165-174. https://doi.org/10.2343/geochemj.10.165
  8. Harikumar, P.S. and U.P Nasir, 2010. Ecotoxicological impact assessment of heavy metals in core sediments of a tropical estuary. Ecotoxicol. Environ. Saf., 73: 1742-1747. https://doi.org/10.1016/j.ecoenv.2010.08.022
  9. Hou, D., J. He, C. Lu, L. Ren, J. Wang and Z. Xie, 2013. Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicol. Environ. Saf., 93: 135-144. https://doi.org/10.1016/j.ecoenv.2013.03.012
  10. Jeong, H., J. Lee, K.T. Kim, E.S. Kim and K. Ra, 2019. Identification on metal pollution sources in road dust of Industrial Complex using magnetic property around Shihwa Lake Basin. J. Korean Soc. Mar. Environ. Energy, 22: 18-33. https://doi.org/10.7846/JKOSMEE.2019.22.1.18
  11. Jeong, H., K. Ra, K.T. Kim, E.S. Kim, S.Y. Lee and M.S. Choi, 2018. Tracing the pollution source using Pb isotopes in sediments of the coastal region surrounding the National Industrial Complex, Korea. J. Coastal Res., SI85: 1456-1460.
  12. Jeong, H., K.T. Kim, E.S. Kim, K. Ra and S.Y. Lee, 2016. Sediment quality assessment for heavy metals in stream around the Shihwa Lake. J. Korean Soc. Mar. Environ. Energy, 19: 25-36. https://doi.org/10.7846/JKOSMEE.2016.19.1.25
  13. Jeong, H., K.T. Kim, E.S. Kim, S.Y. Lee and K. Ra, 2017. Regional variation and discharge characteristics of stream water quality and heavy metals around the Shihwa Lake Basin. J. Korean Soc. Mar. Environ. Energy, 20: 76-83. https://doi.org/10.7846/JKOSMEE.2017.20.2.76
  14. Koide, M., K.W. Bruland and E.D. Goldberg, 1973. $^{228}Th/^{232}Th$ and $^{210}Pb$ geochronologies in marine and lake sediments. Geochim. Cosmochim. Acta, 37: 1171-1187.
  15. Korea Ocean Research and Development Institute (KORDI), 1999. Report on study of environmental changes and establishment of conservation countermeasure for Lake Shihwa. 363p.
  16. Korea Water Resources Corporation (K-Water), 2015. Analysis of surface current variation observed with HF-radar in the coastal water off the Sihwa Tidal Power Plant (KIWE-WSO-15-02) (In Korean).
  17. Lee, C.K., 2016. Analysis of flow characteristics during the operation of Sihwa tidal power plant. Master's thesis, Inha University, Incheon, Korea (In Korean).
  18. Li, Y. and H.G. Li, 2017. Historical records of trace metals in core sediments from the Lianyungang coastal sea, Jiangsu, China. Mar. Pollut. Bull., 116: 56-63. https://doi.org/10.1016/j.marpolbul.2016.12.063
  19. Muller, G., 1969. Index of geo-accumulation in sediments of the Rhine River. J. Geol., 2: 108-118.
  20. Nichols, M.M. and R.B. Biggs, 1985. Estuaries. In: R.A. Davis Jr. (Editor), Coastal sedimentary environments (2nd ed.). Springer-Verlag, NY, pp. 77-186.
  21. Ra, K., E.S. Kim, K.T. Kim, J.K. Kim, J.M. Lee and J.Y. Choi, 2013a. Assessment of heavy meal contamination and its ecological risk in the surface sediments along the coast of Korea. J. Coastal Res., SI65: 105-110.
  22. Ra, K., J.H. Bang, J.M. Lee, K.T. Kim and E.S. Kim, 2011. The extent and historical trend of metal pollution recorded in core sediments from the artificial Lake Shihwa, Korea. Mar. Pollut. Bull., 62: 1814-1821. https://doi.org/10.1016/j.marpolbul.2011.05.010
  23. Ra, K., J.K. Kim, E.S. Kim, K.T. Kim, J.M. Lee, S.K. Kim, E.Y. Kim, S.Y. Lee and E.J. Park, 2013b. Evaluation of spatial and temporal variations of water quality in Lake Shihwa and Outer sea by using water quality index in Korea: A case study of influence of Tidal Power Plant Operation. J. Korean Soc. Mar. Environ. Energy, 16: 102-114. https://doi.org/10.7846/JKOSMEE.2013.16.2.102
  24. Ra, K., J.K. Kim, J.M. Lee, S.Y. Lee, E.S. Kim and K.T. Kim, 2014. Characteristics and risk assessment of heavy metals in the stormwater runoffs from Industrial region discharged into Shihwa Lake. J. Korean Soc. Mar. Environ. Energy, 14: 283-296.
  25. Tomlinson, D.C., J.G. Wilson, C.R. Harris and D.W. Jeffrey, 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Hegoland Mar. Res., 33: 566-575.
  26. Veerasingam S., P. Vethamony, R.M. Murali and B. Fernandes, 2015. Depositional record of trace metals and degree of contamination in core sediments from the Mandovi estuarine mangrove ecosystem, west coast of India. Mar. Pollut. Bull., 91: 362-367. https://doi.org/10.1016/j.marpolbul.2014.11.045
  27. Wang, S., W. Wang, J. Chen, L. Zhao, B. Zhang and J. Xia, 2019. Geochemical baseline establishment and pollution source determination of heavy metals in lake sediments: A case study in Lihu Lake, China. Sci. Total Environ., 657: 978-986. https://doi.org/10.1016/j.scitotenv.2018.12.098
  28. Wei, X., L. Han, B. Gao, H. Zhou, J. Lu and X. Wan, 2016. Distribution, bioavailability, and potential risk assessment of the metals in tributary sediments of Three Gorges Reservoir: The impact of water impoundment. Ecol. Indic., 61: 667-675. https://doi.org/10.1016/j.ecolind.2015.10.018
  29. Weis, D.A., A.B. Callaway and R.M. Gersberg, 2001. Vertical accretion rates and heavy metal chronologies in wetland sediments of the Tijuana Estuary. Estuaries, 24: 840-850. https://doi.org/10.2307/1353175