DOI QR코드

DOI QR Code

A Study of the Valid Model(Kernel Regression) of Main Feed-Water for Turbine Cycle

주급수 유량의 유효 모델(커널 회귀)에 대한 연구

  • Yang, Hac-Jin (Dept. of Mechatronics, Jeju Tourism University) ;
  • Kim, Seong-Kun (Division of Mechanical and Automotive Engineering, Hoseo University)
  • 양학진 (제주관광대학교 메카트로닉스과) ;
  • 김성근 (호서대학교 기계자동차공학부)
  • Received : 2019.09.29
  • Accepted : 2019.12.06
  • Published : 2019.12.31

Abstract

Corrective thermal performance analysis is required for power plants' turbine cycles to determine the performance status of the cycle and improve the economic operation of the power plant. We developed a sectional classification method for the main feed-water flow to make precise corrections for the performance analysis based on the Performance Test Code (PTC) of the American Society of Mechanical Engineers (ASME). The method was developed for the estimation of the turbine cycle performance in a classified section. The classification is based on feature identification of the correlation status of the main feed-water flow measurements. We also developed predictive algorithms for the corrected main feed-water through a Kernel Regression (KR) model for each classified feature area. The method was compared with estimation using an Artificial Neural Network (ANN). The feature classification and predictive model provided more practical and reliable methods for the corrective thermal performance analysis of a turbine cycle.

터빈 사이클 보정 열 성능 분석은 발전소의 현재 성능을 결정하고 향상된 경제성 운전을 위해 요구된다. 본 연구에서는 신뢰성있는 성능 분석을 위해서 산업 표준인 ASME(American Society of Mechanical Engineers) PTC(Performance Test Code)를 기본으로 성능 분석에서 우선적으로 중요하게 적용되는 주급수 유량을 대상으로 영역별 판정 알고리즘을 개발하고 각 영역별로 현재의 터빈 사이클 성능을 추정하는 알고리즘을 개발하였다. 추정 알고리즘은 측정 상태량의 상관 관계를 기반으로 영역별로 형상 분류를 제시하고, 이를 기반으로 커널 회귀 모델을 이용하여 학습된 추정 모델을 구성하였으며, 커널 회귀 모델링의 우수성을 검증하기 위하여 신경 회로망 모델의 학습 결과와 비교하였다. 주급수 유량의 형상 특성에 따른 분류 및 추정 모델은 터빈 사이클에서 정확한 보정 열 성능 분석을 제공함으로써 성능 분석의 신뢰도를 증가시킬 수 있었으며 다른 성능 결정 변수에 대한 학습 및 검증 모델로 사용될 수 있다.

Keywords

References

  1. S. K. Kim, K. H. Choi, "Development of Performance Analysis System(NOPAS) for Turbine Cycle of Nuclear Power Plant", Journal of Korean Nuclear Society, Vol. 33, No. 1, pp.211-218, 2001.
  2. S. K. Kim, K. H. Choi, "Development of Performance Analysis Methodology for Nuclear Power Plant Turbine Cycle using Validation Model of Performance Measurement", Journal of KSME, Vol. 24, No. 12, pp.1625-1634, 2001. DOI: http://dx.doi.org/10.22634/KSME-B.2000.24.12.1625
  3. American Society of Mechanical Engineers, Performance Test Code 6, "Steam Turbines", 1976.
  4. American Society of Mechanical Engineers, Performance Test Code 6A, "Appendix A to Test Code for Steam Turbine", 1982.
  5. American Society of Mechanical Engineers, Performance Test Code 12.1, "Closed Feed Water Heaters", 1978.
  6. American Society of Mechanical Engineers, Performance Test Code 12.2, "Steam Condensing Apparatus", 1983.
  7. T. Fernando, H. Maier, G. Dnady, "Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach", Journal of Hydrology, Vol. 367, pp.165-176, 2009. DOI: https://doi.org/10.1016/j.jhydrol.2008.10.019
  8. H. J. Yang, S. K. Kim, K. H. Choi, "A Study of the Feature Classification and the Predictive Model of Main Feed-Water Flow for Turbine Cycle", Journal of Energy Engineering, Vol. 23, No. 4, pp.263-271, 2014. DOI: https://doi.org/10.5855/ENERGY.2014.23.4.263
  9. H. J. Yang, S. K. Kim, "A Predictive Model of the Generator Output Based on the Learning of Performance Data in Power Plant", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 16, No. 12, pp.8753-8759, 2015. DOI: https://doi.org/10.5762/KAIS.2015.16.12.8753
  10. H. J. Yang, A study of the feature classification and the predictive algorithms of main feed-water for turbine cycle, Ph.D Dissertation, Hoseo University, Asan, Korea, pp.85-88, 2011.
  11. N. Cristianini, J. Shawe-Taylor, "Introduction to Support Vector Machines and other Kernel-based Learning Method", Cambridge University Press, 2000.