Abstract
The PBA of ship weapon system should be installed and operated under harsh environmental conditions and so it should be highly reliable to endure the mission profiles during its entire lifetime. In the case of PBA failure during operation, rapid maintenance is highly likely to be difficult due to problems such as supply of parts, which can have a devastating effect on the mission. In order to validate the reliability of PBA, a series of tests are performed with PBA samples, but they require time, testing facilities, samples, expenses and failure analysis if failed. The reliability of PBA is predicted on the basis of specifications such as MIL-HDBK-217F, but this specification does not take into account failure mechanisms for specific design details, environment and usage, interconnects and its characteristics that drive many failures of PBA in the field. Therefore, this study predicts the reliability of PBA using an RPA tool and proposes the RPA methodology as a validation process at the design stage. With RPA, it is now possible to achieve design validation including inherent failure mechanism, identification of weakest link, alternative design options, and test plan development.
함정 무기체계에 탑재되는 회로카드조립체(Printed Board Assembly, 이하 PBA)는 해양 함상이라는 가혹한 환경 조건에서 운용되기 때문에 임무 수행의 중요성과 정비의 어려움 등을 고려하여 높은 신뢰성 확보가 요구된다. 운용 중 PBA 고장 발생 시 신속한 수리부속 보급이 어렵고 임무수행에 영향을 미친다. 개발단계에서 신뢰성 시험이 시제품 제작 이후에 수행되며, 시험 수행을 위해 시간, 장소, 시료, 비용의 확보와 고장부위 식별 등에 많은 노력과 어려움이 따른다. 그리고 MIL-HDBK-217F 규격 등을 토대로 한 신뢰도 예측은 부품단위 고장률에 근거하고 있어 설계(PCB층/재질, 전자부품 배치/상호관계), 사용 환경과 방법, 접합부 구조와 특성(패드 크기/솔더 재질) 등 부품 외적인 고장요인을 고려하고 있지 않다. 이에 따라 본 연구에서는 고장물리(Physics of Failure, 이하 PoF) 기반 도구를 활용, 신뢰성 물리학 분석(Reliability Physics Analysis, 이하 RPA)을 수행하여 시제품 제작 전 열-기계적 측면의 신뢰성을 향상시키는 방안을 제시한다. RPA 수행과 적용을 통해 PBA의 특화된 다양한 고장메커니즘을 고려한 신뢰성 점검, 신뢰성 취약부위식별, 설계대안 도출, 설계반영 및 시험계획 수립 등 사전 검증을 수행하여 높은 신뢰성을 확보할 수 있다.