초록
In this paper, We used the regression model of machine learning for improve the print quantity problem when which print scaffold with 400 ㎛ pore using FDM 3d printer. We have difficult to experiment with changing all factors in the field. So we reduced print quantity by selected two factors that most impact the pore size. We printed and measured scaffold 5 times under same conditions. We created regression model using scaffold pore size and print conditions. We predicted pore size of untested print condition using the regression model. After print scaffold with 400 ㎛ pore, we printed scaffold 5 times under same conditions. We compare the predicted scaffold pore size and the measured scaffold pore size. We confirmed that error is less than 1 % and we verified the results quantitatively.