참고문헌
- Williams, C.K., Hillmyer, M.A., "Polymers from renewable resources: a perspective for a special issue of polymer reviews," Polym. Rev., 48(1), pp. 1-10, (2008). https://doi.org/10.1080/15583720701834133
- Lee, Y.J., Lee, S.B., Jung, J.Y., Lee, D.H., and Cho, U. R., "A Study on Composites of Ethylene-Vinyl Acetate Copolymer and Ethylene-Propylene-Diene Rubber with Aluminum Hydroxide as a Fire Retardant," Elastomers and Composites, 51(2), pp. 93-98, (2016). https://doi.org/10.7473/EC.2016.51.2.93
- Pfister, Daniel P., Ying Xia, Richard C. L., "Recent advances in vegetable oil‐based polyurethanes", ChemSusChem, 4(6), pp. 703-717, (2011). https://doi.org/10.1002/cssc.201000378
- Sahoo, S., Misra, M., Mohanty, A.K., "Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process", COMPOS. PART A-APPL. S., 42(11), pp. 1710-1718, (2011). https://doi.org/10.1016/j.compositesa.2011.07.025
- Lee, D.H., Lee, K.H., Cho, U.R., "Property Comparison of Bio-Polyurethane and Petroleum based Polyurethane," J. SEMICONDUCT. DISPLAY. TECH., 17(2), pp. 47-52, (2018).
- Jang, S.H., Li, X.X., Cho, U.R., "A Study on Graphene Oxide and Carboxylated Styrene-Butadiene Rubber (XSBR) Nanocomposites," J. Semiconduct. Display. Tech., 16(1), pp. 52-58, (2017).
- Chung, Y.J., "Combustive Properties of Low Density Polyethylene and Ethylene Vinyl Acetate Composites Including Magnesium Hydroxide," Fire Science and Engineering, 25(5), pp. 69-75, (2011).
- Fritzen, F., Bohlke, T., "Reduced basis homogenization of viscoelastic composites", Compos. Sci. Technol., 76, pp. 84-91, (2013). https://doi.org/10.1016/j.compscitech.2012.12.012
- Lee, M., Yu. D., Kim, Y., Lee, S., Kim, J.H., Lee, Y.C., "Flame Retardancy and Physical Properties of Ethylene Vinyl Acetate/Aluminum Trihydroxide Composites," Polymer (Korea), 39(3), pp. 433-440, (2015). https://doi.org/10.7317/pk.2015.39.3.433
- Li, X.X., Lee, S.B., Cho, U.R., "Study on Property Change with a Fire Retardant Content in the Manufacture of Polymer Composites for Cable Sheath," Elastomers and Composites, 54(2), pp. 118-122, (2019). https://doi.org/10.7473/EC.2019.54.2.118
- Chen, X., Li, X.X., Cho, U.R., "Preparation of Hydroxyethyl Cellulose-Bamboo Charcoal (HxBy) Hybrid and Its Application to Reinforcement of Natural Rubber," Polymer (Korea), 43(3), pp. 351-358, (2019). https://doi.org/10.7317/pk.2019.43.3.351
- Li, X.X., Jeong, S.Y., Choi, E.J., Cho, U.R., "Study on Properties of Epoxidized Natural Rubber/Solution Styrene Butadiene Rubber Blend with Silica and Carbon Black in Different Filling Ratio," Polymer (Korea), 43(2), pp. 321-326, (2019). https://doi.org/10.7317/pk.2019.43.2.321
- Li, X.X., Lee, S.B., Cho, U.R., "Study on Manufacture and Properties of Polymer Compounds for Cable Sheath," J. Semiconduct. Display. Tech., 18(1), pp. 1-6, (2019).
- Lee, D.H., Li, X.X., Cho, U.R., "A Study on Properties of SSBR/NdBR Rubber Composites Reinforced by Silica", Elastomers and Composites, 53(4), pp. 202-206, (2019). https://doi.org/10.7473/EC.2018.53.4.202
- Chen, X., Li, X.X., Cho, U.R., "Study on Improvement of Properties for Epoxidized Natural Rubber by Addition of Starch and Molybdenum Disulfide," Polymer (Korea), 42(6), pp. 1085-1090, (2018). https://doi.org/10.7317/pk.2018.42.6.1085
- Yang, L.Y., Yu, T.T., Zheng, L., Liao, K., "Synergistic effect of hybrid carbon nantube-graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites," J. Mater. Chem., 21(29), pp. 10844-10851, (2011). https://doi.org/10.1039/c1jm11359c
- Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., Lee, J.H., "Recent advances in graphene based polymer composites," Prog. Polym. Sci., 35(11), pp. 1350-1375, (2010). https://doi.org/10.1016/j.progpolymsci.2010.07.005
- Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S., "Graphene based materials: past, present and future," Prog. Mater. Sci., 56(8), pp. 1178-1271, (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003
- Zhou, G., Wang, D. W., Yin, L., Li, C. N., Li, F. Cheng, H.M., "Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage," ACS nano, 6(4), pp. 3214-3223, (2012). https://doi.org/10.1021/nn300098m
-
Hao, X., Jin, Z., Yang, H., Lu, G., Bi, Y., "Peculiar synergetic effect of
$MoS_2$ quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution," Appl. Catal. B-Environ., 210, pp. 45-56, (2017). https://doi.org/10.1016/j.apcatb.2017.03.057 - Tang, Z., Zhang, L., Feng, W., Guo, B., Liu, F., Jia, D., "Rational design of graphene surface chemistry for high-performance rubber/graphene composites," Macromolecules, 47(24), pp. 8663-8673, (2014). https://doi.org/10.1021/ma502201e
-
Tang, Z., Zhang, C., Wei, Q., Weng, P., Guo, B., "Remarkably improving performance of carbon black-filled rubber composites by incorporating
$MoS_2$ nano platelets," Compos. Sci. Technol., 132, pp. 93-100, (2016). https://doi.org/10.1016/j.compscitech.2016.07.001 - Min. S., Lu, G., "Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of graphene", J. Phys. Chem. C., 116(48), pp. 25415-25424, (2012). https://doi.org/10.1021/jp3093786
-
Tsai, C.Y., Lin, S.Y., Tsai, H.C., "Butyl rubber nanocomposites with monolayer
$MoS_2$ additives: structural characteristics, enhanced mechanical, and gas barrier properties", Polymers, 10(3), pp. 238-251, (2018). https://doi.org/10.3390/polym10030238