DOI QR코드

DOI QR Code

Improving the Color Gamut of a Liquid-crystal Display by Using a Bandpass Filter

  • Sun, Yan (Department of Applied Physics, Hebei University of Technology) ;
  • Zhang, Chi (Department of Applied Physics, Hebei University of Technology) ;
  • Yang, Yanling (Department of Applied Physics, Hebei University of Technology) ;
  • Ma, Hongmei (Department of Applied Physics, Hebei University of Technology) ;
  • Sun, Yubao (Department of Applied Physics, Hebei University of Technology)
  • Received : 2019.08.06
  • Accepted : 2019.09.09
  • Published : 2019.12.25

Abstract

To improve the color gamut of a liquid-crystal display (LCD), we propose a bandpass filter that is added to the backlight unit to optimize the backlight spectrum. The bandpass filter can only transmit red, green and blue light in the visible range, while reflecting the unwanted light. We study the optical properties of the bandpass filter using the transfer-matrix method, and the effect of the bandpass filter on the color gamuts of LCDs is also investigated. When a bandpass filter based on a 5-layer configuration comprising low and high refractive indices ((HL)2H) is used in phosphor-converted white-light-emitting diode (pc-WLED), K2SiF6:Mn4+ (KSF-LED), and quantum-dot (QD) backlights, the color gamuts of the LCDs improve from 72% to 95.3% of NTSC, from 92% to 106.7% of NTSC, and from 104.3% to 112.2% of NTSC respectively. When the incident angle of light increases to 30°, the color gamuts of LCDs with pc-WLED and KSF-LED backlights decrease by 2.9% and 1% respectively. For the QD backlight, the color gamut almost does not change. When the (HL)2H structure is coated on the diffusion film, the color gamut can be improved to 92.6% of NTSC (pc-WLED), 105.6% of NTSC (KSF-LED), and 111.9% of NTSC (QD). The diffusion film has no obvious effect on the color gamut. The results have an important potential application in wide-color-gamut LCDs.

Keywords

References

  1. K. Kakinuma, "Technology of wide color gamut backlight with light-emitting diode for liquid crystal display television," Jpn. J. Appl. Phys. 45, 4330 (2006). https://doi.org/10.1143/JJAP.45.4330
  2. H. W. Chen, R. D. Zhu, J. He, W. Duan, W. Hu, Y. Q. Lu, M. C. Li, S. L. Lee, Y. J. Dong, and S. T. Wu, "Going beyond the limit of an LCD's color gamut," Light Sci. Appl. 6, e17043 (2017). https://doi.org/10.1038/lsa.2017.43
  3. R. D. Zhu, Z. Y. Luo, H. W. Chen, Y. J. Dong, and S. T. Wu, "Realizing Rec. 2020 color gamut with quantum dot displays," Opt. Express 23, 23680-23693 (2015). https://doi.org/10.1364/OE.23.023680
  4. H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, "Liquid crystal display and organic light-emitting diode display: present status and future perspectives," Light. Sci. Appl. 7, 17168 (2018). https://doi.org/10.1038/lsa.2017.168
  5. C. F. He, K. Y. Qian, and H. F. Wang, "Wide color gamut LCD module using white light LED," Proc. SPIE 10244, 102440O (2017).
  6. C. C. Tsai, C. C. Lai, and S. M. Hsieh, "Wide color-gamut improvement of LCM using multi-phosphor white LED and modified rich color method," IEEE Trans. Consum. Electron. 55, 1566-1571 (2009). https://doi.org/10.1109/TCE.2009.5278028
  7. Z. Luo, Y. Chen, and S. T. Wu, "Wide color gamut LCD with a quantum dot backlight," Opt. Express 21, 26269-26284 (2013). https://doi.org/10.1364/OE.21.026269
  8. Y. Y. Kang, Z. C. Song, X. F. Jiang, X. Yin, L. Fang, J. Gao, Y. H. Su, and F. Zhao, "Quantum dots for wide color gamut displays from photoluminescence to electroluminescence," Nanoscale Res. Lett. 12, 154 (2017). https://doi.org/10.1186/s11671-017-1907-1
  9. K. Akahane, Y. Shibata, T. Ishinabe, and H. Fujikake, "67-3: Wide viewing angle Band-Pass reflective polarizer for Wide-Color-Gamut LCDs," SID Int. Symp. Dig. Tech. Pap. 48, 988-991 (2017).
  10. H. Chen, R. Zhu, G. Tan, M.-C. Li, S.-L. Lee, and S.-T. Wu, "Enlarging the color gamut of liquid crystal displays with a functional reflective polarizer," Opt. Express 25, 102-111 (2017). https://doi.org/10.1364/OE.25.000102
  11. D. H. Park, J. S. Han, W. Kim, and H. S. Jang, "Facile synthesis of thermally stable $CsPbBr_3$ perovskite quantum dot-inorganic $SiO_2$ composites and their application to white light-emitting diodes with wide color gamut," Dyes Pigm. 149, 246-252 (2018). https://doi.org/10.1016/j.dyepig.2017.10.003
  12. H. C. Yoon, H. Kang, S. Lee, J. H. Oh, H. Yang, and Y. R. Do, "Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance," ACS Appl. Mater. Interfaces 8, 18189-18200 (2016). https://doi.org/10.1021/acsami.6b05468
  13. L. Young, "Multilayer interference filters with narrow stop bands," Appl. Opt. 6, 297-315 (1967). https://doi.org/10.1364/AO.6.000297
  14. W. Withayachumnankul, B. M. Fischer, and D. Abbott, "Quarter-wavelength multilayer interference filter for terahertz waves," Opt. Commun. 281, 2374-2379 (2008). https://doi.org/10.1016/j.optcom.2007.12.094
  15. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, "Interest of broadband optical monitoring for thin-film filter manufacturing," Appl. Opt. 46, 4294-4303 (2007). https://doi.org/10.1364/AO.46.004294
  16. S. Ghoniemy and S. Mahmoud, "Performance optimization of thin film optical interference filters for optical communication systems," in Proc. IEEE International Conference on Signal Processing and Communications (Dubai, Nov. 2007) pp. 1111-1114.
  17. C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, "Investigation of a broadband $TiO_2/SiO_2$ optical thin-film filter for hybrid solar power systems," Appl. Energy 92, 298-306 (2012). https://doi.org/10.1016/j.apenergy.2011.09.028
  18. J. Fan, K. Hsiao, Y. J. Lee, R. C. Chien, C. Y. Lee, and S. J. Chen, "71-3: A new solution without quantum dots for LCD to achieve more than 90% BT.2020," SID Int. Symp. Dig. Tech. Pap. 49, 949-952 (2018).
  19. H. A. Macleod, Thin Film Optical Filter, 4th ed. (CRC Press, Roca Raton, 2010).
  20. R. J. Martin-Palma, J. M. Martinez-Duart, and A. Macleod, "Determination of the optical constants of a semiconductor thin film employing the matrix method," IEEE Trans. Educ. 43, 63-68 (2000). https://doi.org/10.1109/13.825742
  21. S. H. Moo and C. K. Hwangbo, "Effects of annealing on the optical, structural, and chemical properties of $TiO_2$ and $MgF_2$ thin films prepared by plasma ion-assisted deposition," Appl. Opt. 45, 1447-1455 (2006). https://doi.org/10.1364/AO.45.001447
  22. S. H. Moo and C. K. Hwangbo, "Influence of plasma ion-beam assistance on $TiO_2$ and $MgF_2$ thin films deposited by plasma ion-assisted deposition," Surf. Coat. Technol. 201, 8250-8257 (2007). https://doi.org/10.1016/j.surfcoat.2006.01.085