DOI QR코드

DOI QR Code

나노 금속복합체의 박과 작물 종자 분리균에 대한 항균효과

Antimicrobial Activities of Nano Metal Hybrid Materials against the Microorganisms Isolated from Cucurbit Seeds

  • 김상우 (강원대학교 식물자원응용공학과) ;
  • 권병헌 (강원대학교 식물자원응용공학과) ;
  • 주한준 (강원대학교 식물자원응용공학과) ;
  • 마헤시 아드히카리 (강원대학교 식물자원응용공학과) ;
  • 박미리 ((재)철원플라즈마산업기술연구원) ;
  • 송석균 ((재)철원플라즈마산업기술연구원) ;
  • 이윤수 (강원대학교 식물자원응용공학과)
  • Kim, Sang Woo (Department of Applied Plant Sciences, Kangwon National University) ;
  • Gwon, Byeong Heon (Department of Applied Plant Sciences, Kangwon National University) ;
  • Ju, Han Jun (Department of Applied Plant Sciences, Kangwon National University) ;
  • Adhikari, Mahesh (Department of Applied Plant Sciences, Kangwon National University) ;
  • Park, Mi-ri (Cheorwon Plasma Research Institute) ;
  • Song, Seok-Kyun (Cheorwon Plasma Research Institute) ;
  • Lee, Youn Su (Department of Applied Plant Sciences, Kangwon National University)
  • 투고 : 2019.11.25
  • 심사 : 2019.12.06
  • 발행 : 2019.12.31

초록

이 연구는 플라즈마 기술 (radio frequency-thermal plasma system과 direct current sputtering system)을 이용하여 제작된 나노 금속복합체를 이용하여 박과 작물(수박, 호박, 박)의 종자에서 분리한 미생물의 항균 활성 효과를 검정하기 위하여 실험을 진행하였다. 8종의 나노 금속복합체와 4가지의 담체를 이용하여 5종의 곰팡이와 10종의 세균을 대상으로 기내 실험을 수행하였다. 그 결과, 곰팡이를 대상으로 한 항균실험에서 나노 금속복합체 Brass/CaCO3의 경우 1,000 ppm 농도에서 5종의 곰팡이에 대하여 100%의 항균효과를 나타내었다. 세균을 대상으로 한 항균실험의 경우 나노 금속복합체 Brass/CaCO3(1,000 ppm)은 Weissella sp., Rhodotorula mucilaginosa, Burkholderia sp. 그리고 Enterococcus sp. 4가지 세균을 100% 억제하는 것으로 확인되었다. 나노 금속복합체 G-Ni은 Rhizopus stolonifer에 대하여 100% 항균효과를 나타냈으며, 4가지 곰팡이에 대해서는 52.94-71.76% 정도의 항균효과를 나타내었다. 하지만 나노 금속복합체 G-Ni은 10종의 세균에 대해서는 효과가 없는 것으로 나타났다. 요약하면, 8가지 나노 금속복합체와 4가지 담체 중에서 Brass/CaCO3가 5종의 곰팡이와 4종의 세균 대하여 항균효과가 있었으며, G-Ni는 5종의 곰팡이에 대해서 52.94-100% 효과를 보였으나 세균에 대해서는 항균효과가 없는 것으로 확인되었다.

This study was carried out to test the antimicrobial activities of nano metal hybrid materials produced by plasma technologies (radio frequency-thermal plasma system and direct current sputtering system) against microbes isolated from cucurbit (watermelon, pumpkin, and gourd) seeds. Eight different nano metal hybrid materials and four carriers were tested against five different fungal and ten different bacterial isolates in vitro. Among the tested nano metal hybrid material, Brass/CaCO3 (1,000 ppm) exhibited 100% antimicrobial effect against all the five tested fungi. However, nano metal hybrid material Brass/CaCO3 (1,000 ppm) inhibited only four bacterial isolates, Weissella sp., Rhodotorula mucilaginosa, Burkholderia sp., and Enterococcus sp. at 100% level, and did not inhibited other six bacterial isolates. Nano metal hybrid material graphite-nickel (G-Ni) showed 100% inhibition rate against Rhizopus stolonifer and 52.94-71.76% inhibition rate against four different fungal isolates. Nano metal hybrid material G-Ni did not show any inhibition effects against tested ten bacterial isolates. In summary, among the tested eight different nano metal hybrid materials and four carriers, Brass/CaCO3 showed inhibition effects against five fungal isolates and four bacterial isolates, and G-Ni showed variable inhibition effects (52.94-100%) against five fungal isolates and did not show any inhibition effects against all the bacterial isolates.

키워드

참고문헌

  1. Adamson, A. W. and Gast, A. P. 1997. Physical Chemistry of Surfaces. 6th ed. John Wiley & Sons, New York, NY, USA. 808 pp.
  2. Assis, S. M. P., Mariano, R. L. R., Silva-Hanlin, D. M. W. and Duarte, V. 1999. Bacterial fruit blotch caused by Acidovorax avenae subsp. citrulli in melon in the state of Rio Grande do Norte, Brazil Fitopatol. Bras. 24: 191. (In Portuguese)
  3. Brannon-Peppas, L. and Blanchette, J. O. 2004. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56: 1649-1659. https://doi.org/10.1016/j.addr.2004.02.014
  4. Brinker, C. J. and Scherer, G. W. 1990. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, Boston, MA, USA. 908 pp.
  5. Burda, C., Chen, X., Narayanan, R. and El-Sayed, M. A. 2005. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105: 1025-1102. https://doi.org/10.1021/cr030063a
  6. Burdman, S., Kots, N., Kritzman, G. and Kopelowitz, J. 2005. Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Dis. 89: 1339-1347. https://doi.org/10.1094/PD-89-1339
  7. Chang, H.-S., Kim, J.-E., Chung, D.-J., Lee, J.-S., Choi, C.-B. and Kim, H.-Y. 2006. The antibacterial effect of photo-catalytic titanium dioxide on canine skin. Korean J. Vet. Res. 46: 279-284. (In Korean)
  8. Dastjerdi, R. and Montazer, M. 2010. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B Biointerfaces 79: 5-18. https://doi.org/10.1016/j.colsurfb.2010.03.029
  9. Ditta, A. 2012. How helpful is nanotechnology in agriculture? Adv. Nat. Sci. Nanosci. Nanotechnol. 3: 033002. https://doi.org/10.1088/2043-6262/3/3/033002
  10. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N. and Kim, J. O. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  11. Fravel, D. R., Marois, J. J., Lumsden, R. D. and Connick, W. J. Jr. 1985. Encapsulation of potential biocontrol agents in an alginate-clay matrix. Phytopathology 75: 774-777. https://doi.org/10.1094/Phyto-75-774
  12. Harrison, J. J., Tremaroli, V., Stan, M. A., Chan, C. S., Vacchi-Suzzi, C., Heyne, B. J. et al. 2009. Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance. Environ. Microbiol. 11: 2491-2509. https://doi.org/10.1111/j.1462-2920.2009.01973.x
  13. Haruta, M. 1997. Size-and support-dependency in the catalysis of gold. Catal. Today 36: 153-166. https://doi.org/10.1016/S0920-5861(96)00208-8
  14. Holt, K. B. and Bard, A. J. 2005. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44: 13214-13223. https://doi.org/10.1021/bi0508542
  15. Hopkins, D. L., Thompson, C. M., Hilgren, J. and Lovic, B. 2003. Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seedborne disease of watermelon. Plant Dis. 87: 1495-1499. https://doi.org/10.1094/PDIS.2003.87.12.1495
  16. Hsieh, C.-T., Tzou, D.-Y., Pan, C. and Chen, W.-Y. 2012. Microwaveassisted deposition, scalable coating, and wetting behavior of silver nanowire layers. Surf. Coat. Technol. 207: 11-18. https://doi.org/10.1016/j.surfcoat.2012.02.026
  17. Hwang, I.-S., Cho, J., Hwang, J. H., Hwang, B., Choi, H., Lee, J. et al. 2011. Antimicrobial effects and mechanism(s) of silver nanoparticle. Korean J. Microbiol. Biotechnol. 39: 1-8. (In Korean)
  18. Karimi, L., Zohoori, S. and Amini, A. 2014. Multi-wall carbon nanotubes and nano titanium dioxide coated on cotton fabric for superior self-cleaning and UV blocking. New Carbon Mater. 29: 380-385. https://doi.org/10.1016/S1872-5805(14)60144-X
  19. Kim, H. S., Um, Y. H., Kim, S. W., Yadav, D. R., Adhikari, M., Lee, S. C. et al. 2015a. Antimicrobial activity of chemical fungicides against Acidovorax citrulli and Acidovorax valerianellae, pathogens of bacterial fruit blotch (BFB). J. Agric. Life Environ. Sci. 27: 56-60. (In Korean)
  20. Kim, S. W., Adhikari, M., Yadav, D. R., Lee, H. G., Um, Y. H., Kim, H. S. et al. 2015b. Antimicrobial activity of nano materials against Acidovorax citrulli and other plant pathogens. Res. Plant Dis. 21: 12-19. (In Korean) https://doi.org/10.5423/RPD.2015.21.1.012
  21. Kim, Y.-K., Hong, S.-J., Jee, H.-J., Shim, C.-K., Park, J.-H., Han, E.-J. et al. 2011. Population dynamics of effective microorganisms in microbial pesticides and environmental-friendly organic materials according to storing period and temperature. Korean J. Pestic. Sci. 15: 55-60. (In Korean)
  22. Kumar, A., Verma, U. and Chauhan, S. 2012. Antimicrobial activity of nickel II coordinated compounds. G. J. B. B. 1: 310-313.
  23. Latin, R. X. and Hopkins, D. L. 1995. Bacterial fruit blotch of watermelon. The hypothetical exam question becomes reality. Plant Dis. 79: 761-765. https://doi.org/10.1094/PD-79-0761
  24. Mamonova, I. A. 2013. Study of the antibacterial action of metal nanoparticles on clinical strains of gram-negative bacteria. World J. Med. Sci. 8: 314-317.
  25. Martin, H. L. and Horlock, C. M. 2002. First report of Acidovorax avenae subsp. citrulli as a pathogen of Gramma in Australia. Plant Dis. 86: 1406. https://doi.org/10.1094/PDIS.2002.86.12.1406A
  26. Min, J. S. 2008. Effects of nano-silver liquid against various plant pathogenic microorganisms. M.S. thesis. Kangwon National University, Chuncheon, Korea. 92 pp. (In Korean)
  27. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. et al. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
  28. Oya, A., Wakahara, T. and Yoshida, S. 1993. Preparation of pitchbased antibacterial activated carbon fiber. Carbon 31: 1243-1247. https://doi.org/10.1016/0008-6223(93)90082-L
  29. Pal, S., Tak, Y. K. and Song, J. M. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73: 1712-1720. https://doi.org/10.1128/AEM.02218-06
  30. Park, H.-J., Kim, J. Y., Kim, J., Lee, J.-H., Hahn, J.-S., Gu, M. B. et al. 2009. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 43: 1027-1032. https://doi.org/10.1016/j.watres.2008.12.002
  31. Park, K. Y. 2002. Status and problems of synthesis of nanoparticles by vapor phase method. Theories Appl. Chem. Eng. 8: 1. (In Korean)
  32. Park, M. R., Choi, W. S., Yadav, D. R., Kim, S. W., Kim, J. I. and Lee, Y. S. 2015. Antibacterial effect of nickel nanoparticles on Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. J. Agric. Life Environ. Sci. 27: 43-50.
  33. Park, S.-J., Kim, B.-J. and Rhee, J. M. 2003. Antibacterial activity of activated carbon fibers containing copper meta. Polymer (Korea) 27: 235-241. (In Korean)
  34. Rane, K. K. and Latin, R. X. 1992. Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Dis. 76: 509-512. https://doi.org/10.1094/PD-76-0509
  35. Roh, J.-Y., Sim, S. J., Yi, J., Park, K., Chung, K. H., Ryu, D.-Y. et al. 2009. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ. Sci. Technol. 43: 3933-3940. https://doi.org/10.1021/es803477u
  36. Seo, S.-T., Park, J.-H., Lee, J.-S., Han, K.-S. and Cheong, S.-R. 2006. Bacterial fruit blotch of melon caused by Acidovorax avenae subsp. citrulli. Res. Plant Dis. 12: 185-188. (In Korean) https://doi.org/10.5423/RPD.2006.12.3.185
  37. Sharma, V. K., Yngard, R. A. and Lin, Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145: 83-96. https://doi.org/10.1016/j.cis.2008.09.002
  38. Song, J., Chu, Y., Liu, Y., Li, L. and Sun, W. 2008. Room-temperature controllable fabrication of silver nanoplates reduced by aniline. Chem. Commun. (Camb) 10: 1223-1225.