DOI QR코드

DOI QR Code

Face Anti-Spoofing Based on Combination of Luminance and Chrominance with Convolutional Neural Networks

합성곱 신경망 기반 밝기-색상 정보를 이용한 얼굴 위변조 검출 방법

  • Kim, Eunseok (Department of Electrical and Electronics Engineering, Konkuk University) ;
  • Kim, Wonjun (Department of Electrical and Electronics Engineering, Konkuk University)
  • 김은석 (건국대학교 전기전자공학부) ;
  • 김원준 (건국대학교 전기전자공학부)
  • Received : 2019.08.29
  • Accepted : 2019.09.18
  • Published : 2019.11.30

Abstract

In this paper, we propose the face anti-spoofing method based on combination of luminance and chrominance with convolutional neural networks. The proposed method extracts luminance and chrominance features independently from live and fake faces by using stacked convolutional neural networks and auxiliary networks. Unlike previous methods, an attention module has been adopted to adaptively combine extracted features instead of simply concatenating them. In addition, we propose a new loss function, called the contrast loss, to learn the classifier more efficiently. Specifically, the contrast loss improves the discriminative power of the features by maximizing the distance of the inter-class features while minimizing that of the intra-class features. Experimental results demonstrate that our method achieves the significant improvement for face anti-spoofing compared to existing methods.

본 논문에서는 얼굴의 밝기와 색상 정보를 함께 이용한 합성곱 신경망 기반의 얼굴 위변조 검출 방법을 제안한다. 제안하는 방법은 적층된 합성곱 신경망과 보조 신경망을 이용하여 실제 얼굴과 위변조된 얼굴의 밝기 특징과 색상 특징을 독립적으로 추출한다. 기존의 방법과는 달리, 본 논문에서는 추출된 특징을 단순 결합(Concatenation)하는 것이 아니라 주의 모듈(Attention Module)을 이용하여 적응적(Adaptively)으로 조합할 수 있도록 하였다. 또한, 효과적인 분류기 학습을 위하여 대비 손실함수(Contrast Loss Function)를 새롭게 제안하였는데, 대비 손실함수는 동일 클래스 내의 특징 간의 차이는 최소화 시키고 서로 다른 클래스의 특징 간의 차이는 최대화 시킴으로써 특징의 분별력을 높인다. 다양한 실험을 통해 본 논문에서 제안하는 방법이 기존 얼굴 위변조 검출 방법 대비 개선된 성능을 보임을 확인하고 그 결과를 분석한다.

Keywords

References

  1. A. K. Jain, K. Nandakumar, and A. Ross, "50 years of biometric research: Accomplishments, challenges, and opportunities," Pattern Recognit. Lett., vol. 79, pp. 80-105, Aug. 2015. https://doi.org/10.1016/j.patrec.2015.12.013
  2. J.-W. Li, "Eye blink detection based on multiple Gabor response waves," in Proc. Int. Conf. Mach. Learn. Cybern. (ICMLC), Jul. 2008, pp. 2852-2856.
  3. G. Chetty and M. Wagner, "Multi-level liveness verification for face-voice biometric authentication," in Proc. Biometrics Symp., Special Session Res. Biometric Consortium Conf., Sep. 2006, pp. 1-6.
  4. K. Kollreider, H. Fronthaler, and J. Bigun, "Evaluating liveness by face images and the structure tensor," in Proc. 4th IEEE Workshop Automat. Identificat. Adv. Technol., Oct. 2005, pp. 75-80.
  5. J. Galbally, S. Marcel, and J. Fierrez, "Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition," IEEE Trans. Image Process. vol. 23, no. 2, pp. 710-724, Feb. 2014. https://doi.org/10.1109/TIP.2013.2292332
  6. T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002. https://doi.org/10.1109/TPAMI.2002.1017623
  7. J. Maatta, A. Hadid, and M. Pietikainen, "Face spoofing detection from single images using micro-texture analysis," in Proc. Int. Joint Conf. Biometrics (IJCB), Oct. 2011, pp. 1-7.
  8. D. Gragnaniello, G. Poggi, C. Sansone, and L. Verdoliva, "An investigation of local descriptors for biometric spoofing detection," IEEE Trans. Inf. Forensics Security, vol. 10, no. 4, pp. 849-863, Apr. 2015. https://doi.org/10.1109/TIFS.2015.2404294
  9. J. Yang, Z. Lei, and S. Z. Li, "Learn convolutional neural network for face anti-spoofing," arXiv preprint arXiv: 1408.5601, Aug. 2014.
  10. O. Lucena, A. Junior, V. Moia, R. Souza, E. Valle, and R. Lotufo, "Transfer learning using convolutional neural networks for face antispoofing," in Proc. Int. Conf. Image Anal. Recognit., Jun. 2017, pp. 27-34.
  11. J. Hu, L. Shen, and G. Sun, "Squeeze-and-Excitation Networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), June. 2018, pp. 7132-7141.
  12. P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), Dec. 2001, pp. I-511-I-518.
  13. Z. Boulkenafet, J. Komulainen, and A. Hadid, "Face anti-spoofing using color texture analysis," IEEE Trans. Inf. Forensics Security, vol. 11 no. 8, pp. 1818-1830, Aug. 2016. https://doi.org/10.1109/TIFS.2016.2555286
  14. Z. Xu, S. Li, and W. Deng, "Learning temporal features using lstm-cnn architecture for face anti-spoofing," in Proc. IAPR Asian Conf. Pattern Recognit. (ACPR), Nov. 2015, pp. 141-145.
  15. X. Zhao, Y. Lin, and J. Heikkila, "Dynamic texture recognition using volume local binary count patterns with an application to 2D face spoofing detection," IEEE Trans. Multimedia, vol. 20, no. 3, pp. 552-566, Mar. 2017 https://doi.org/10.1109/tmm.2017.2750415
  16. J. Gan, S. Li, Y. Zhai, and C. Liu, "3D convolutional neural network based on face anti-spoofing," in Proc. Int. Conf. Multimedia Image Process. (ICMIP), Mar. 2017, pp. 1-5.
  17. Z. Zhang, J. Yan, S. Liu, Z. Lei, D Yi, S. Z. Li. "A Face Antispoofing Database with Diverse Attacks." in Proc. Int. Conf. Biometrics (ICB), Mar. 2012, pp. 26-31