References
- A. K. Jain, K. Nandakumar, and A. Ross, "50 years of biometric research: Accomplishments, challenges, and opportunities," Pattern Recognit. Lett., vol. 79, pp. 80-105, Aug. 2015. https://doi.org/10.1016/j.patrec.2015.12.013
- J.-W. Li, "Eye blink detection based on multiple Gabor response waves," in Proc. Int. Conf. Mach. Learn. Cybern. (ICMLC), Jul. 2008, pp. 2852-2856.
- G. Chetty and M. Wagner, "Multi-level liveness verification for face-voice biometric authentication," in Proc. Biometrics Symp., Special Session Res. Biometric Consortium Conf., Sep. 2006, pp. 1-6.
- K. Kollreider, H. Fronthaler, and J. Bigun, "Evaluating liveness by face images and the structure tensor," in Proc. 4th IEEE Workshop Automat. Identificat. Adv. Technol., Oct. 2005, pp. 75-80.
- J. Galbally, S. Marcel, and J. Fierrez, "Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition," IEEE Trans. Image Process. vol. 23, no. 2, pp. 710-724, Feb. 2014. https://doi.org/10.1109/TIP.2013.2292332
- T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002. https://doi.org/10.1109/TPAMI.2002.1017623
- J. Maatta, A. Hadid, and M. Pietikainen, "Face spoofing detection from single images using micro-texture analysis," in Proc. Int. Joint Conf. Biometrics (IJCB), Oct. 2011, pp. 1-7.
- D. Gragnaniello, G. Poggi, C. Sansone, and L. Verdoliva, "An investigation of local descriptors for biometric spoofing detection," IEEE Trans. Inf. Forensics Security, vol. 10, no. 4, pp. 849-863, Apr. 2015. https://doi.org/10.1109/TIFS.2015.2404294
- J. Yang, Z. Lei, and S. Z. Li, "Learn convolutional neural network for face anti-spoofing," arXiv preprint arXiv: 1408.5601, Aug. 2014.
- O. Lucena, A. Junior, V. Moia, R. Souza, E. Valle, and R. Lotufo, "Transfer learning using convolutional neural networks for face antispoofing," in Proc. Int. Conf. Image Anal. Recognit., Jun. 2017, pp. 27-34.
- J. Hu, L. Shen, and G. Sun, "Squeeze-and-Excitation Networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), June. 2018, pp. 7132-7141.
- P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), Dec. 2001, pp. I-511-I-518.
- Z. Boulkenafet, J. Komulainen, and A. Hadid, "Face anti-spoofing using color texture analysis," IEEE Trans. Inf. Forensics Security, vol. 11 no. 8, pp. 1818-1830, Aug. 2016. https://doi.org/10.1109/TIFS.2016.2555286
- Z. Xu, S. Li, and W. Deng, "Learning temporal features using lstm-cnn architecture for face anti-spoofing," in Proc. IAPR Asian Conf. Pattern Recognit. (ACPR), Nov. 2015, pp. 141-145.
- X. Zhao, Y. Lin, and J. Heikkila, "Dynamic texture recognition using volume local binary count patterns with an application to 2D face spoofing detection," IEEE Trans. Multimedia, vol. 20, no. 3, pp. 552-566, Mar. 2017 https://doi.org/10.1109/tmm.2017.2750415
- J. Gan, S. Li, Y. Zhai, and C. Liu, "3D convolutional neural network based on face anti-spoofing," in Proc. Int. Conf. Multimedia Image Process. (ICMIP), Mar. 2017, pp. 1-5.
- Z. Zhang, J. Yan, S. Liu, Z. Lei, D Yi, S. Z. Li. "A Face Antispoofing Database with Diverse Attacks." in Proc. Int. Conf. Biometrics (ICB), Mar. 2012, pp. 26-31