• Title/Summary/Keyword: face anti-spoofing

Search Result 4, Processing Time 0.017 seconds

LH-FAS v2: Head Pose Estimation-Based Lightweight Face Anti-Spoofing (LH-FAS v2: 머리 자세 추정 기반 경량 얼굴 위조 방지 기술)

  • Hyeon-Beom Heo;Hye-Ri Yang;Sung-Uk Jung;Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.309-316
    • /
    • 2024
  • Facial recognition technology is widely used in various fields but faces challenges due to its vulnerability to fraudulent activities such as photo spoofing. Extensive research has been conducted to overcome this challenge. Most of them, however, require the use of specialized equipment like multi-modal cameras or operation in high-performance environments. In this paper, we introduce LH-FAS v2 (: Lightweight Head-pose-based Face Anti-Spoofing v2), a system designed to operate on a commercial webcam without any specialized equipment, to address the issue of facial recognition spoofing. LH-FAS v2 utilizes FSA-Net for head pose estimation and ArcFace for facial recognition, effectively assessing changes in head pose and verifying facial identity. We developed the VD4PS dataset, incorporating photo spoofing scenarios to evaluate the model's performance. The experimental results show the model's balanced accuracy and speed, indicating that head pose estimation-based facial anti-spoofing technology can be effectively used to counteract photo spoofing.

Face Spoofing Attack Detection Using Spatial Frequency and Gradient-Based Descriptor

  • Ali, Zahid;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.892-911
    • /
    • 2019
  • Biometric recognition systems have been widely used for information security. Among the most popular biometric traits, there are fingerprint and face due to their high recognition accuracies. However, the security system that uses face recognition as the login method are vulnerable to face-spoofing attacks, from using printed photo or video of the valid user. In this study, we propose a fast and robust method to detect face-spoofing attacks based on the analysis of spatial frequency differences between the real and fake videos. We found that the effect of a spoofing attack stands out more prominently in certain regions of the 2D Fourier spectra and, therefore, it is adequate to use the information about those regions to classify the input video or image as real or fake. We adopt a divide-conquer-aggregate approach, where we first divide the frequency domain image into local blocks, classify each local block independently, and then aggregate all the classification results by the weighted-sum approach. The effectiveness of the methodology is demonstrated using two different publicly available databases, namely: 1) Replay Attack Database and 2) CASIA-Face Anti-Spoofing Database. Experimental results show that the proposed method provides state-of-the-art performance by processing fewer frames of each video.

Face Anti-Spoofing Based on Combination of Luminance and Chrominance with Convolutional Neural Networks (합성곱 신경망 기반 밝기-색상 정보를 이용한 얼굴 위변조 검출 방법)

  • Kim, Eunseok;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1113-1121
    • /
    • 2019
  • In this paper, we propose the face anti-spoofing method based on combination of luminance and chrominance with convolutional neural networks. The proposed method extracts luminance and chrominance features independently from live and fake faces by using stacked convolutional neural networks and auxiliary networks. Unlike previous methods, an attention module has been adopted to adaptively combine extracted features instead of simply concatenating them. In addition, we propose a new loss function, called the contrast loss, to learn the classifier more efficiently. Specifically, the contrast loss improves the discriminative power of the features by maximizing the distance of the inter-class features while minimizing that of the intra-class features. Experimental results demonstrate that our method achieves the significant improvement for face anti-spoofing compared to existing methods.

A Study on Multiple Modalities for Face Anti-Spoofing (얼굴 스푸핑 방지를 위한 다중 양식에 관한 연구)

  • Wu, Chenmou;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.651-654
    • /
    • 2021
  • Face anti-spoofing (FAS) techniques play a significant role in the defense of facial recognition systems against spoofing attacks. Existing FAS methods achieve the great performance depending on annotated additional modalities. However, labeling these high-cost modalities need a lot of manpower, device resources and time. In this work, we proposed to use self-transforming modalities instead the annotated modalities. Three different modalities based on frequency domain and temporal domain are applied and analyzed. Intuitive visualization analysis shows the advantages of each modality. Comprehensive experiments in both the CNN-based and transformer-based architecture with various modalities combination demonstrate that self-transforming modalities improve the vanilla network a lot. The codes are available at https://github.com/chenmou0410/FAS-Challenge2021.