DOI QR코드

DOI QR Code

Thermal Durability of Thermal Barrier Coatings in Furnace Cyclic Thermal Fatigue Test: Effects of Purity and Monoclinic Phase in Feedstock Powder

  • Park, Hyun-Myung (School of Materials Science and Engineering, Changwon National University) ;
  • Jun, Soo-Hyk (School of Materials Science and Engineering, Changwon National University) ;
  • Lyu, Guanlin (School of Materials Science and Engineering, Changwon National University) ;
  • Jung, Yeon-Gil (School of Materials Science and Engineering, Changwon National University) ;
  • Yan, Byung-Il (Doosan Heavy Industries & Construction) ;
  • Park, Kwang-Yong (Doosan Heavy Industries & Construction)
  • Received : 2018.09.13
  • Accepted : 2018.10.25
  • Published : 2018.11.30

Abstract

The effects of the purity and monoclinic phase of feedstock powder on the thermal durability of thermal barrier coatings (TBC) were investigated through cyclic thermal exposure. Bond and top coats were deposited by high velocity oxygen fuel method using Ni-Co based feedstock powder and air plasma spray method using three kinds of yttria-stabilized zirconia with different purity and monoclinic phase content, respectively. Furnace cyclic thermal fatigue test was performed to investigate the thermal fatigue behavior and thermal durability of TBCs. TBCs with high purity powder showed better sintering resistance and less thickness in the thermally grown oxide layer. The thermal durability was found to strongly depend on the content of monoclinic phase and the porosity in the top coat; the best thermal fatigue behavior and thermal durability were in the TBC prepared with high purity powder without monoclinic phase.

Keywords

References

  1. M. Gell, E. Jordan, K. Vaidyanathan, K. McCarron, B. Barber, Y. H. Sohn, and V. K. Tolpygo, "Bond Strength, Bond Stress and Spallation Mechanisms of Thermal Barrier Coatings," Surf. Coat. Technol., 120 53-60 (1999).
  2. R. A. Miller, "Current Status of Thermal Barrier Coatings- an Overview," Surf. Coat. Technol., 30 [1] 1-11 (1987). https://doi.org/10.1016/0257-8972(87)90003-X
  3. S. M. Meier and D. K. Gupta, "The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications," J. Eng. Gas Turbines Power, 116 [1] 250-57 (1994). https://doi.org/10.1115/1.2906801
  4. D. R. Clarke and C. G. Levi, "Materials Design for the Next Generation Thermal Barrier Coatings," Annu. Rev. Mater. Res., 33 [1] 383-417 (2003). https://doi.org/10.1146/annurev.matsci.33.011403.113718
  5. R. A Miller, "Thermal Barrier Coatings for Aircraft Engines: History and Directions," J. Therm. Spray Technol., 6 [1] 35 (1997). https://doi.org/10.1007/BF02646310
  6. S. Bose and J. DeMasi-Marcin, "Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney," J. Therm. Spray Technol., 6 [1] 99-104 (1997). https://doi.org/10.1007/BF02646318
  7. R. L. Jones, Metallurgical and Ceramic Protective Coatings; pp. 194-235, Chapman and Hall, London, 1996.
  8. X. Q. Cao, R. Vassen, and D. Stoever, "Ceramic Materials for Thermal Barrier Coatings," J. Eur. Ceram. Soc., 24 [1] 1-10 (2004). https://doi.org/10.1016/S0955-2219(03)00129-8
  9. S. Paul, A. Cipitria, S. A. Tsipas, and T. W. Clyne, "Sintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different Stabilisers," Surf. Coat. Technol., 203 [8] 1069-74 (2009). https://doi.org/10.1016/j.surfcoat.2008.09.037
  10. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, "Mechanisms Controlling the Durability of Thermal Barrier Coatings," Prog. Mater. Sci., 46 [5] 505-53 (2001). https://doi.org/10.1016/S0079-6425(00)00020-7
  11. D. R. Clarke, M. Oechsner, and N. P. Padture, "Thermal- Barrier Coatings for more Efficient Gas-Turbine Engines," MRS Bull., 37 [10] 891-98 (2012). https://doi.org/10.1557/mrs.2012.232
  12. M. N. Rahaman, J. R. Gross, R. E. Dutton, and H. Wang, "Phase Stability, Sintering, and Thermal Conductivity of Plasma-Sprayed $ZrO_2$-$Gd_2O_3$ Compositions for Potential Thermal Barrier Coating Applications," Acta Mater., 54 [6] 1615-21 (2006). https://doi.org/10.1016/j.actamat.2005.11.033
  13. E. Bakan, D. E. Mack, G. Mauer, and R. Vassen, "Gadolinium Zirconate/YSZ Thermal Barrier Coatings: Plasma Spraying, Microstructure, and Thermal Cycling Behavior," J. Am. Ceram. Soc., 97 [12] 4045-51 (2014). https://doi.org/10.1111/jace.13204
  14. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stover, "Zirconates as New Materials for Thermal Barrier Coatings," J. Am. Ceram. Soc., 83 [8] 2023-28 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
  15. T. A. Taylor, "Low Thermal Expansion Bondcoats for Thermal Barrier Coatings"; U S Patent 7,910,225 (March 22, 2011).
  16. G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and E. Lara-Curzio, "Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging," J. Am. Ceram. Soc., 9 [9] 2736-44 (2014).
  17. R. Harnacha, P. Fauchais, and F. Nardou, "Influence of Dopant on the Thermal Properties of Two Plasma- Sprayed Zirconia Coatings Part I: Relationship between Powder Characteristics and Coating Properties," J. Therm. Spray Technol., 5 [4] 431 (1996). https://doi.org/10.1007/BF02645273
  18. S. Stemmer, J. Vleugels, and O. V. D. Biest, "Grain Boundary Segregation in High-Purity, Yttria-Stabilized Tetragonal Zirconia Polycrystals (Y-TZP)," J. Eur. Ceram. Soc., 18 [11] 1565-70 (1998). https://doi.org/10.1016/S0955-2219(98)00078-8
  19. K. Y. Park, Y. G. Jung, I. S. Kim, and B. I. Yang, "Effects of Purity and Phase Content of Feedstock Powder on Thermal Durability of Zirconia-Based Thermal Barrier Coatings," J. Therm. Spray Technol., 26 [6] 1161-67 (2017). https://doi.org/10.1007/s11666-017-0571-4
  20. J. Wang, H. P. Li, and R. Stevens, "Hafnia and Hafnia-Toughened Ceramics," J. Mater. Sci., 27 [20] 5397-430 (1992). https://doi.org/10.1007/BF00541601
  21. J. L. Smialek, "Compiled Furnace Cyclic Lives of EB-PVD Thermal Barrier Coatings," Surf. Coat. Technol., 276 31-8 (2015). https://doi.org/10.1016/j.surfcoat.2015.06.018
  22. C. Wang, Y. Wang, S. Fan, Y. You, L. Wang, C. Yang, X. Sun, and X. Li, "Optimized Functionally Graded $La_2Zr_2O_7$/8YSZ Thermal Barrier Coatings Fabricated by Suspension Plasma spraying," J. Alloys Compd., 649 1182-90 (2015). https://doi.org/10.1016/j.jallcom.2015.05.290
  23. D. Song, U. Paik, X. Guo, J. Zhang, T. K. Woo, Z. Lu, S. H. Jung, J. H Lee, and Y. G. Jung, "Microstructure Design for Blended Feedstock and its Thermal Durability in Lanthanum Zirconate Based Thermal Barrier Coatings," Surf. Coat. Technol., 308 40-9 (2016). https://doi.org/10.1016/j.surfcoat.2016.07.112
  24. F. Andreola, C. Leonelli, and M. Romagnoli, "Techniques Used to Determine Porosity," Am. Ceram. Soc. Bull., 79 [7] 49-52 (2000).
  25. S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, "Application of Image Analysis for Characterization of Porosity in Thermal Spray Coatings and Correlation with Small Angle Neutron Scattering," Surf. Coat. Technol., 187 [1] 6-16 (2004). https://doi.org/10.1016/j.surfcoat.2004.01.032
  26. W. R. Chen, X. Wu, B. R. Marple, and P. C. Patnaik, "Oxidation and Crack Nucleation/Growth in an Air-Plasma-Sprayed Thermal Barrier Coating with NiCrAlY Bond Coat," Surf. Coat. Technol., 197 109-15 (2005). https://doi.org/10.1016/j.surfcoat.2004.06.027
  27. D. Zhu and A. M. Robert, "Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions," J. Therm. Spray Technol., 9 [2] 175-80 (2000). https://doi.org/10.1361/105996300770349890
  28. G. Thurn, G. A. Schneider, H. A. Bahr, and F. Aldinger, "Toughness Anisotropy and Damage Behavior of Plasma Sprayed $ZrO_2$ Thermal Barrier Coatings," Surf. Coat. Technol., 123 [2-3] 147-58 (2000). https://doi.org/10.1016/S0257-8972(99)00528-9
  29. M. K. Gupta and P. Nylen, "A Modelling Approach to Design of Microstructures in Thermal Barrier Coatings," J. Ceram. Sci. Technol., 4 [2] 85-92 (2013).
  30. N. P. Padture, M. Gell, and E. H. Jordan, "Thermal Barrier Coatings for Gas-Turbine Engine Applications," Science, 296 [5566] 280-84 (2002). https://doi.org/10.1126/science.1068609
  31. A. V. Put, D. Oquab, E. Pere, A. Raffaitin, and D. Monceau, "Beneficial Effect of Pt and of Pre-Oxidation on the Oxidation Behaviour of an NiCoCrAlYTa Bond-Coating for Thermal Barrier Coating Systems," Oxid. Met., 75 [5-6] 247-79 (2011). https://doi.org/10.1007/s11085-011-9241-y
  32. Y. Li, C. J. Li, Q. Zhang, L. K. Xing, and G. J. Yang, "Effect of Chemical Compositions and Surface Morphologies of MCrAlY Coating on its Isothermal Oxidation Behavior," J. Therm. Spray Technol., 20 [1-2] 121-31 (2011). https://doi.org/10.1007/s11666-010-9590-0
  33. A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser, and W. J. Quadakkers, "Effect of Surface Condition on the Oxidation Behaviour of MCrAlY Coatings," Surf. Coat. Technol., 201 [7] 3824-28 (2006). https://doi.org/10.1016/j.surfcoat.2006.07.252
  34. O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser, "Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines-Part I: Experiments," Surf. Coat. Technol., 202 [20] 5027-32 (2008). https://doi.org/10.1016/j.surfcoat.2008.05.006
  35. R. Stevens, An Introduction to Zirconia; p. 7, Magnesium Elektron Limited, Twickenham, 1983.

Cited by

  1. Crack-Resistance Behavior of an Encapsulated, Healing Agent Embedded Buffer Layer on Self-Healing Thermal Barrier Coatings vol.9, pp.6, 2018, https://doi.org/10.3390/coatings9060358
  2. 경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가 vol.21, pp.8, 2020, https://doi.org/10.5762/kais.2020.21.8.248