DOI QR코드

DOI QR Code

Nanostructured Hydroxyapatite for Biomedical Applications: From Powder to Bioceramic

  • 투고 : 2018.09.11
  • 심사 : 2018.11.04
  • 발행 : 2018.11.30

초록

In this study, a wet chemical method was used to synthesize nanostructured hydroxyapatite for biomedical applications. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials with a sodium hydroxide solution as an agent for pH adjustment. Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, differential thermal analysis, thermal gravimetric analysis, atomic absorption spectroscopy, and ethylenediaminetetraacetic acid (EDTA) titration analysis were used to characterize the synthesized powders. Having been uniaxially pressed, the powders formed a disk-like shape. The sinterability and electrical properties of the samples were examined, and the three-point bending test allowed for the measurement of their mechanical properties. Sedimentation analysis was used to analyze the slurry ability of hydroxyapatite. As in-vitro biological properties of the samples, biocompatibility and cytotoxicity were assessed using osteoblast-like cells and the L929 cell line, respectively. Solubility was assessed by employing a simulated body fluid.

키워드

참고문헌

  1. T. Hooshmand, A. Abrishamchian, F. Najafi, M. Mohammadi, H. Najafi, and M. Tahriri, "Development of Sol-Gel-Derived Multi-Wall Carbon Nanotube/Hydroxyapatite Nanocomposite Powders for Bone Substitution," J. Compos. Mater., 48 [4] 483-89 (2013). https://doi.org/10.1177/0021998313475368
  2. F. S. Jazi, N. Parvin, M. Tahriri, M. Alizadeh, S. Abedini, and M. Alizadeh, "The Relationship between the Synthesis and Morphology of $SnO_2$-$Ag_2O$ Nanocomposite," Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 44 [5] 759-64 (2014). https://doi.org/10.1080/15533174.2013.783862
  3. M. Karimi, M. Rabiee, F. Moztarzadeh, M. Bodaghi, and M. Tahriri, "Ammonia-free Method for Synthesis of CdS Nanocrystalline Thin Films through Chemical Bath Deposition Technique," Solid State Commun., 149 [41-42] 1765-68 (2009). https://doi.org/10.1016/j.ssc.2009.07.027
  4. E. Mohagheghpour, M. Rabiee, F. Moztarzadeh, M. Tahriri, M. Jafarbeglou, D. Bizari, and H. Eslami, "Controllable Synthesis, Characterization and Optical Properties of ZnS: Mn Nanoparticles as a Novel Biosensor," Mater. Sci. Eng., C, 29 [6] 1842-48 (2009). https://doi.org/10.1016/j.msec.2009.02.012
  5. S. A. Poursamar, M. Rabiee, A. Samadikuchaksaraei, M. Tahriri, M. Karimi, and M. Azami, "Influence of the Value of the pH on the Preparation of Nano Hydroxyapatite Polyvinyl Alcohol Composites," J. Ceram. Process. Res., 10 [5] 679-82 (2009).
  6. N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee, and L. Tayebi, "A Novel Electrochemical Biosensor Based on $Fe_3O_4$ Nanoparticles-Polyvinyl Alcohol Composite for Sensitive Detection of Glucose," Anal. Biochem., 519 19-26 (2017). https://doi.org/10.1016/j.ab.2016.12.006
  7. M. Tahriri and F. Moztarzadeh, "Preparation, Characterization, and in vitro Biological Evaluation of PLGA/Nano-Fluorohydroxyapatite (FHA) Microsphere-Sintered Scaffolds for Biomedical Applications," Appl. Biochem. Biotechnol., 172 [5] 2465-79 (2014). https://doi.org/10.1007/s12010-013-0696-y
  8. R. Touri, F. Moztarzadeh, Z. Sadeghian, D. Bizari, M. Tahriri, and M. Mozafari, "The Use of Carbon Nanotubes to Reinforce 45S5 Bioglass-Based Scaffolds for Tissue Engineering Applications," BioMed Res. Int., 2013 465086 (2013).
  9. M. Ashuri, F. Moztarzadeh, N. Nezafati, A. A. Hamedani, and M. Tahriri, "Development of a Composite Based on Hydroxyapatite and Magnesium and Zinc-Containing Sol-Gel-Derived Bioactive Glass for Bone Substitute Applications," Mater. Sci. Eng., C, 32 [8] 2330-39 (2012). https://doi.org/10.1016/j.msec.2012.07.004
  10. M. Azami, F. Moztarzadeh, and M. Tahriri, "Preparation, Characterization and Mechanical Properties of Controlled Porous Gelatin/Hydroxyapatite Nanocomposite through Layer Solvent Casting Combined with Freeze-Drying and Lamination Techniques," J. Porous Mater., 17 [3] 313-20 (2010). https://doi.org/10.1007/s10934-009-9294-3
  11. D. Bizari, F. Moztarzadeh, M. Rabiee, M. Tahriri, F. Banafatizadeh, A. Ansari, and K. Khoshroo, "Development of Biphasic Hydroxyapatite/Dicalcium Phosphate Dihydrate (DCPD) Bone Graft Using Polyurethane Foam Template: in vitro and in vivo Study," Advances in Applied Ceramics, 110 [7] 417-25 (2011). https://doi.org/10.1179/1743676111Y.0000000052
  12. H. Eslami, M. Solati-Hashjin, and M. Tahriri, "The Comparison of Powder Characteristics and Physicochemical, Mechanical and Biological Properties between Nanostructure Ceramics of Hydroxyapatite and Fluoridated Hydroxyapatite," Mater. Sci. Eng., C, 29 [4] 1387-98 (2009). https://doi.org/10.1016/j.msec.2008.10.033
  13. K. Fatehi, F. Moztarzadeh, M. Solati-Hashjin, M. Tahriri, M. Rezvannia, and R. Ravarian, "In vitro Biomimetic Deposition of Apatite on Alkaline and Heat Treated Ti6A14V Alloy Surface," Bull. Mater. Sci., 31 [2] 101 (2008). https://doi.org/10.1007/s12034-008-0018-0
  14. K. Fatehi, F. Moztarzadeh, M. Solati-Hashjin, M. Tahriri, M. Rezvannia, and A. Saboori, "Biomimetic Hydroxyapatite Coatings Deposited onto Heat and Alkali Treated Ti6Al4V Surface," Surf. Eng., 25 [8] 583-88 (2009). https://doi.org/10.1179/174329408X326470
  15. R. Ravarian, F. Moztarzadeh, M. S. Hashjin, S. Rabiee, P. Khoshakhlagh, and M. Tahriri, "Synthesis, Characterization and Bioactivity Investigation of Bioglass/Hydroxyapatite Composite," Ceram. Int., 36 [1] 291-97 (2010). https://doi.org/10.1016/j.ceramint.2009.09.016
  16. M. Raz, F. Moztarzadeh, M. A. Shokrgozar, M. Azami, and M. Tahriri, "Development of Biomimetic Gelatin-Chitosan/Hydroxyapatite Nanocomposite via Double Diffusion Method for Biomedical Applications," Int. J. Mater. Res., 105 [5] 493-501 (2014). https://doi.org/10.3139/146.111061
  17. M. Tahriri, M. Solati-Hashjin, and H. Eslami, "Synthesis and Characterization of Hydroxyapatite Nanocrystals via Chemical Precipitation Technique," Iran. J. Pharm. Sci., 4 [2] 127-34 (2008).
  18. A. Zamanian, F. Moztarzadeh, S. Kordestani, S. Hesaraki, and M. Tahriri, "Novel Calcium Hydroxide/Nanohydroxyapatite Composites for Dental Applications: in vitro Study," Adv. Appl. Ceram., 109 [7] 440-44 (2010). https://doi.org/10.1179/174367610X12804792635107
  19. F. Barandehfard, M. K. Rad, A. Hosseinnia, K. Khoshroo, M. Tahriri, H. Jazayeri, K. Moharamzadeh, and L. Tayebi, "The Addition of Synthesized Hydroxyapatite and Fluorapatite Nanoparticles to a Glass-Ionomer Cement for Dental Restoration and its Effects on Mechanical Properties," Ceram. Int., 42 [15] 17866-75 (2016). https://doi.org/10.1016/j.ceramint.2016.08.122
  20. M. Behroozibakhsh, F. Shafiei, T. Hooshmand, F. Moztarzadeh, M. Tahriri, and H. Bagheri, "Effect of a Synthetic Nanocrystalline-Fluorohydroxyapatite on the Eroded Enamel Lesions," Dent. Mater., 30 e117-18 (2014).
  21. M. Tahriri, R. Bader, W. Yao, S. Dehghani, K. Khoshroo, M. Rasoulianboroujeni, and L. Tayebi, "Bioactive Glasses and Calcium Phosphates," pp. 7-24 in Biomaterials for Oral and Dental Tissue Engineering, Woodhead Publishing, 2018.
  22. M. Tahriri, J. White, B. Shah, H. Eslami, and L. Tayebi, "Synthesis of Fluorine-Substituted Hydroxyapatite Nanopowders for Dental Applications," Dent. Mater., 32 e50-1 (2016).
  23. K. Fatehi, F. Moztarzadeh, M. Tahriri, K. Khoshroo, S. Heidari, and A. Sadeghi, "Biomimetic Synthesis, Characterization, and Adhesion Properties of Bone-like Apatite on Heat and Alkaline-Treated Titanium Alloy," Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 44 [10] 1535-40 (2014). https://doi.org/10.1080/15533174.2013.809747
  24. M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya, and J. Tanaka, "Self-Organization Mechanism in a Bone-like Hydroxyapatite/Collagen Nanocomposite Synthesized in vitro and its Biological Reaction in vivo," Biomaterials, 22 [13] 1705-11 (2001). https://doi.org/10.1016/S0142-9612(00)00305-7
  25. R. Schnettler, V. Alt, E. Dingeldein, H.-J. Pfefferle, O. Kilian, C. Meyer, C. Heiss, and S. Wenisch, "Bone Ingrowth in bFGF-Coated Hydroxyapatite Ceramic Implants, Biomaterials, 24 [25] 4603-8 (2003). https://doi.org/10.1016/S0142-9612(03)00354-5
  26. S.-C. Liou, S.-Y. Chen, and D.-M. Liu, "Synthesis and Characterization of Needlelike Apatitic Nanocomposite with Controlled Aspect Ratios," Biomaterials, 24 [22] 3981-88 (2003). https://doi.org/10.1016/S0142-9612(03)00303-X
  27. F. Jones, "Teeth and Bones: Applications of Surface Science to Dental Materials and Related Biomaterials," Surf. Sci. Rep., 42 [3-5] 75-205 (2001). https://doi.org/10.1016/S0167-5729(00)00011-X
  28. S. Bose and S. K. Saha, "Synthesis and Characterization of Hydroxyapatite Nanopowders by Emulsion Technique," Chem. Mater., 15 [23] 4464-69 (2003). https://doi.org/10.1021/cm0303437
  29. P. Weiss, L. Obadia, D. Magne, X. Bourges, C. Rau, T. Weitkamp, I. Khairoun, J. Bouler, D. Chappard, and O. Gauthier, "Synchrotron X-ray Microtomography (on a Micron Scale) Provides Three-Dimensional Imaging Representation of Bone Ingrowth in Calcium Phosphate Biomaterials," Biomaterials, 24 [25] 4591-601 (2003). https://doi.org/10.1016/S0142-9612(03)00335-1
  30. E. Mavropoulos, A. M. Rossi, N. C. da Rocha, G. A. Soares, J. C. Moreira, and G. T. Moure, "Dissolution of Calcium- Deficient Hydroxyapatite Synthesized at Different Conditions," Mater. Charact., 50 [2-3] 203-7 (2003). https://doi.org/10.1016/S1044-5803(03)00093-7
  31. J. Gomez-Morales, J. Torrent-Burgues, T. Boix, J. Fraile, and R. Rodriguez-Clemente, "Precipitation of Stoichiometric Hydroxyapatite by a Continuous Method," Cryst. Res. Technol., 36 [1] 15-26 (2001). https://doi.org/10.1002/1521-4079(200101)36:1<15::AID-CRAT15>3.0.CO;2-E
  32. T. Kokubo and H. Takadama, "How Useful is SBF in Predicting in vivo Bone Bioactivity?," Biomaterials, 27 [15] 2907-15 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017
  33. M. Komath and H. Varma, "Development of a Fully Injectable Calcium Phosphate Cement for Orthopedic and Dental Applications," Bull. Mater. Sci., 26 [4] 415-22 (2003). https://doi.org/10.1007/BF02711186
  34. M. Murray, J. Wang, C. Ponton, and P. Marquis, "An Improvement in Processing of Hydroxyapatite Ceramics," J. Mater. Sci., 30 [12] 3061-74 (1995). https://doi.org/10.1007/BF01209218
  35. M. Wei, J. Evans, T. Bostrom, and L. Grondahl, "Synthesis and Characterization of Hydroxyapatite, Fluoride-Substituted Hydroxyapatite and Fluorapatite," J. Mater. Sci.: Mater. Med., 14 [4] 311-20 (2003). https://doi.org/10.1023/A:1022975730730
  36. K. Ishikawa, P. Ducheyne, and S. Radin, "Determination of the Ca/P Ratio in Calcium-Deficient Hydroxyapatite Using X-ray Diffraction Analysis," J. Mater. Sci.: Mater. Med., 4 [2] 165-68 (1993). https://doi.org/10.1007/BF00120386
  37. Y. Chen and X. Miao, "Thermal and Chemical Stability of Fluorohydroxyapatite Ceramics with Different Fluorine Contents," Biomaterials, 26 [11] 1205-10 (2005). https://doi.org/10.1016/j.biomaterials.2004.04.027
  38. P. Hartmann, C. Jäger, J. Vogel, and K. Meyer, "Solid State NMR, X-ray Diffraction, and Infrared Characterization of Local Structure in Heat-Treated Oxyhydroxyapatite Microcrystals: an Analog of the Thermal Decomposition of Hydroxyapatite during Plasma-Spray Procedure," J. Solid State Chem., 160 [2] 460-68 (2001). https://doi.org/10.1006/jssc.2001.9274
  39. M. Barsoum and M. W. Barsoum, Fundamentals of Ceramics; CRC press, 2002.
  40. M. I. Kay, R. Young, and A. Posner, "Crystal Structure of Hydroxyapatite," Nature, 204 [4963] 1050-52 (1964). https://doi.org/10.1038/2041050a0
  41. K. A. Gross and L. M. Rodríguez-Lorenzo, "Sintered Hydroxyfluorapatites. Part I: Sintering Ability of Precipitated Solid Solution Powders," Biomaterials, 25 [7-8] 1375-84 (2004). https://doi.org/10.1016/S0142-9612(03)00565-9
  42. L. Rodriguez-Lorenzo, J. Hart, and K. Gross, "Influence of Fluorine in the Synthesis of Apatites. Synthesis of Solid Solutions of Hydroxy-Fluorapatite," Biomaterials, 24 [21] 3777-85 (2003). https://doi.org/10.1016/S0142-9612(03)00259-X
  43. R. Verbeeck, H. Heiligers, F. Driessens, and H. Schaeken, "Effect of Dehydration of Calcium Hydroxylapatite on its Cell Parameters," Zeitschrift für Anorganische und allgemeine Chemie, 466 [1] 76-80 (1980). https://doi.org/10.1002/zaac.19804660109
  44. M. Kikuchi, A. Yamazaki, M. Akao, and H. Aoki, "Thermal Changes in Synthetic Deuterioxyapatite," Mineral. J., 18 [3] 79-86 (1996). https://doi.org/10.2465/minerj.18.79
  45. P. Anderson and J. Elliott, "Subsurface Demineralization in Dental Enamel and Other Permeable Solids during Acid Dissolution," J. Dent. Res., 71 [8] 1473-81 (1992). https://doi.org/10.1177/00220345920710080301
  46. R. W. Rice, C. C. Wu, and F. Boichelt, "Hardness-Grain-Size Relations in Ceramics," J. Am. Ceram. Soc., 77 [10] 2539-53 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb04641.x
  47. A. Krell and P. Blank, "Grain Size Dependence of Hardness in Dense Submicrometer Alumina," J. Am. Ceram. Soc., 78 [4] 1118-20 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08452.x
  48. T. P. Hoepfner and E. Case, "The Influence of the Microstructure on the Hardness of Sintered Hydroxyapatite," Ceram. Int., 29 [6] 699-706 (2003). https://doi.org/10.1016/S0272-8842(02)00220-1
  49. M. Kobune, A. Mineshige, S. Fujii, and H. Iida, "Preparation of Translucent Hydroxyapatite Ceramics by HIP and Their Physical Properties," J. Ceram. Soc. Jpn., 105 [1219] 210-13 (1997). https://doi.org/10.2109/jcersj.105.210
  50. G. Muralithran and S. Ramesh, "The Effects of Sintering Temperature on the Properties of Hydroxyapatite," Ceram. Int., 26 [2] 221-30 (2000). https://doi.org/10.1016/S0272-8842(99)00046-2
  51. N. Thangamani, K. Chinnakali, and F. Gnanam, "The Effect of Powder Processing on Densification, Microstructure and Mechanical Properties of Hydroxyapatite," Ceram. Int., 28 [4] 355-62 (2002). https://doi.org/10.1016/S0272-8842(01)00102-X
  52. K. A. Gross and K. A. Bhadang, "Sintered Hydroxyfluorapatites. Part III: Sintering and Resultant Mechanical Properties of Sintered Blends of Hydroxyapatite and Fluorapatite," Biomaterials, 25 [7-8] 1395-405 (2004). https://doi.org/10.1016/j.biomaterials.2003.08.051
  53. H. Qu and M. Wei, "Effect of Fluorine Content on Mechanical Properties of Sintered Fluoridated Hydroxyapatite," Mater. Sci. Eng. C, 26 [1] 46-53 (2006). https://doi.org/10.1016/j.msec.2005.06.005
  54. M. Akao, H. Aoki, and K. Kato, "Mechanical Properties of Sintered Hydroxyapatite for Prosthetic Applications," J. Mater. Sci., 16 [3] 809-12 (1981). https://doi.org/10.1007/BF02402799
  55. M. M. Monteiro, N. C. C. da Rocha, A. M. Rossi, and G. de Almeida Soares, "Dissolution Properties of Calcium Phosphate Granules with Different Compositions in Simulated Body Fluid," J. Biomed. Mater. Res., Part A, 65 [2] 299-305 (2003).

피인용 문헌

  1. Functional Layered Double Hydroxide Nanohybrids for Biomedical Imaging vol.9, pp.10, 2018, https://doi.org/10.3390/nano9101404
  2. Biocompatible Hydrotalcite Nanohybrids for Medical Functions vol.10, pp.2, 2018, https://doi.org/10.3390/min10020172
  3. Bio-ceramic coatings adhesion and roughness of biomaterials through PM-EDM: a comprehensive review vol.35, pp.11, 2020, https://doi.org/10.1080/10426914.2020.1772483
  4. Coupled effect of particle size of the source materials and calcination temperature on the direct synthesis of hydroxyapatite vol.8, pp.9, 2021, https://doi.org/10.1098/rsos.210684
  5. Toughening of Bioceramic Composites for Bone Regeneration vol.5, pp.10, 2018, https://doi.org/10.3390/jcs5100259