References
- Lee JY, Na YA, Kim E, Lee HS, Kim P. 2016. The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse. J. Microbiol. Biotechnol. 26: 807-822. https://doi.org/10.4014/jmb.1601.01053
- Kase H, Nakayama K. 1997. L-Isoleucine production by analog-resistant mutants derived from threonine-producing strain of Corynebacterium glutamicum. Agric. Biol. Chem. 41: 109-116.
- Vallino JJ, Stephanopoulos G. 1993. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41: 633-646. https://doi.org/10.1002/bit.260410606
- Park JH, Lee SY, Kim TY, Kim HU. 2008. Application of systems biology for bioprocess development. Trends Biotechnol. 26: 404-412. https://doi.org/10.1016/j.tibtech.2008.05.001
- Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, et al. 2002. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res. 9: 189-197. https://doi.org/10.1093/dnares/9.6.189
- Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S. 2006. A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J. Ind. Microbiol. Biotechnol. 33: 610-615. https://doi.org/10.1007/s10295-006-0104-5
- Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. 2011. From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159-168. https://doi.org/10.1016/j.ymben.2011.01.003
- Ikeda M, Nakagawa S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62: 99-109. https://doi.org/10.1007/s00253-003-1328-1
- Wu Y, Li P, Zheng P, Zhou W, Chen N, Sun J. 2015. Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain. J. Biotechnol. 207: 10-11. https://doi.org/10.1016/j.jbiotec.2015.04.018
- Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25. https://doi.org/10.1016/S0168-1656(03)00154-8
- Denisov G, Walenz B, Halpern AL, Miller J, Axelrod N, Levy S, et al. 2008. Consensus generation and variant detection by Celera Assembler. Bioinformatics 24: 1035-1040. https://doi.org/10.1093/bioinformatics/btn074
- Patel RK, Jain M. 2012. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7: e30619. https://doi.org/10.1371/journal.pone.0030619
- Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
- Salamov VSA, Solovyev A. 2011. Automatic annotation of microbial genomes and metagenomic sequences, pp. 61-78. In Li RW (ed.), Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies. Nova Science Publishers, Hauppauge, N.Y.
- Husemann P, Stoye J. 2010. r2cat: synteny plots and comparative assembly. Bioinformatics 26: 570-571. https://doi.org/10.1093/bioinformatics/btp690
- Darling AC, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14: 1394-1403. https://doi.org/10.1101/gr.2289704
- Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J. 2012. PGAP: pangenomes analysis pipeline. Bioinformatics 28: 416-418. https://doi.org/10.1093/bioinformatics/btr655
- Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
- Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, et al. 2010. Tablet--next generation sequence assembly visualization. Bioinformatics 26: 401-402. https://doi.org/10.1093/bioinformatics/btp666
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
- Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5: R12. https://doi.org/10.1186/gb-2004-5-2-r12
- Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80-92. https://doi.org/10.4161/fly.19695
- Kirchner O, Tauch A. 2003. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J. Biotechnol. 104: 287-299. https://doi.org/10.1016/S0168-1656(03)00148-2
- van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545. https://doi.org/10.1007/s002530051557
- Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73. https://doi.org/10.1016/0378-1119(94)90324-7
- Cremer J, Eggeling L, Sahm H. 1991. Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl. Environ. Microbiol. 57: 1746-1752.
- Wendisch, Volker F. 2006. Genetic regulation of Corynebacterium glutamicum metabolism. J. Microbiol. Biotechnol. 16: 1010-1016.
- Gui Y, Ma Y, Xu Q, Zhang C, Xie X, Chen N. 2016. Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain. J. Biotechnol. 220: 64-65. https://doi.org/10.1016/j.jbiotec.2016.01.010
- Baumgart M, Unthan S, Ruckert C, Sivalingam J, Grunberger A, Kalinowski J, et al. 2013. Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl. Environ. Microbiol. 79: 6006-6015. https://doi.org/10.1128/AEM.01634-13
- Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, Ooyen JV, et al. 2014. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab. Eng. 22: 40-52. https://doi.org/10.1016/j.ymben.2013.12.001
- Xie X, Xu L, Shi J, Xu Q, Chen N. 2012. Effect of transport proteins on L-isoleucine production with the L-isoleucineproducing strain Corynebacterium glutamicum YILW. J. Ind. Microbiol. Biotechnol. 39: 1549-1556. https://doi.org/10.1007/s10295-012-1155-4
- Yin L, Shi F, Hu X, Chen C, Wang X. 2013. Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J. Appl. Microbiol. 114: 1369-1377. https://doi.org/10.1111/jam.12141
- Patek M. 2005. Regulation of Gene Expression, pp. 81-98. In Eggeling L, Bott M (eds.), Handbook of Corynebacterium glutamicum. CRC Press, Florida.
- Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ. 2007. L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl. Environ. Microbiol. 73: 2079-2084. https://doi.org/10.1128/AEM.02826-06
- Chen C, Li Y, Hu J, Dong X, Wang X. 2015. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production. Metab. Eng. 29: 66-75. https://doi.org/10.1016/j.ymben.2015.03.004
- Hua Q, Yang C, Baba T, Mori H, Shimizu K. 2003. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J. Bacteriol. 185: 7053-7067. https://doi.org/10.1128/JB.185.24.7053-7067.2003
- Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H. 2004. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7: 182-196. https://doi.org/10.1159/000079827
- Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L. 2005. Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl. Environ. Microbiol. 71: 7139-7144. https://doi.org/10.1128/AEM.71.11.7139-7144.2005
-
Wagner T, Bellinzoni M, Wehenkel A, O'Hare HM, Alzari PM. 2011. Functional plasticity and allosteric regulation of
${\alpha}$ -ketoglutarate decarboxylase in central mycobacterial metabolism. Chem. Biol. 18: 1011-1020. https://doi.org/10.1016/j.chembiol.2011.06.004 - Bunik VI, Fernie AR. 2009. Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem. J. 422: 405-421. https://doi.org/10.1042/BJ20090722
- Tauch A, Hermann T, Burkovski A, Kramer R, Puhler A, Kalinowski J. 1998. Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product. Arch. Microbiol. 169: 303-312. https://doi.org/10.1007/s002030050576
- Bertioli DJ, Moretzsohn MC, Madsen LH, Sandal N, Leal- Bertioli SC, Guimarães PM, et al. 2009. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10: 45. https://doi.org/10.1186/1471-2164-10-45
- Leuchtenberger W. 1996. Amino acids-technical production and use, pp. 465-502. In Rehm HJ, Reed G (eds.), Biotechnology: Products of primary metabolism, 2th Ed. Verlag-Chemie, Weinheim, Germany.
Cited by
- Transcriptomic and metabolomics analyses reveal metabolic characteristics of L-leucine- and L-valine-producing Corynebacterium glutamicum mutants vol.69, pp.5, 2018, https://doi.org/10.1007/s13213-018-1431-2
- Effect of fed-batch and chemostat cultivation processes of C. glutamicum CP for L-leucine production vol.12, pp.1, 2018, https://doi.org/10.1080/21655979.2021.1874693
- Effect of low-level ultrasound treatment on the production of L-leucine by Corynebacterium glutamicum in fed-batch culture vol.12, pp.1, 2018, https://doi.org/10.1080/21655979.2021.1906028
- Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids vol.20, pp.1, 2021, https://doi.org/10.1186/s12934-021-01721-0