DOI QR코드

DOI QR Code

Comparison of Microbial Diversity and Composition in the Jejunum and Colon of Alcohol-Dependent Rats

  • Fan, Yang (Department of Pathogen Biology and Immunology, School of Basic Medical Science, Xi'an Jiaotong University) ;
  • Ya-E, Zhao (Department of Pathogen Biology and Immunology, School of Basic Medical Science, Xi'an Jiaotong University) ;
  • Ji-dong, Wei (Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University) ;
  • Yu-fan, Lu (Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University) ;
  • Ying, Zhang (Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University) ;
  • Ya-lun, Sun (Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University) ;
  • Meng-Yu, Ma (Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University) ;
  • Rui-ling, Zhang (The Second Affiliated Hospital, Xinxiang Medical University)
  • Received : 2018.06.22
  • Accepted : 2018.09.11
  • Published : 2018.11.28

Abstract

Alcohol dependence is a global public health problem, yet the mechanisms of alcohol dependence are incompletely understood. The traditional view has been that ethanol alters various neurotransmitters and their receptors in the brain and causes the addiction. However, an increasing amount of experimental evidence suggests that gut microbiota also influence brain functions via gut-to-brain interactions, and may therefore induce the development of alcohol use disorders. In this study, a rat model of alcohol dependence and withdrawal was employed, the gut microbiota composition was analyzed by high-throughput 16S rRNA gene sequencing, and the metagenome function was predicted by PICRUSt software. The results suggested that chronic alcohol consumption did not significantly alter the diversity and richness of gut microbiota in the jejunum and colon, but rather markedly changed the microbiota composition structure in the colon. The phyla Bacteroidetes and eight genera including Bacteroidales S24-7, Ruminococcaceae, Parabacteroides, Butyricimonas, et al were drastically increased, however the genus Lactobacillus and gauvreauii in the colon were significantly decreased in the alcohol dependence group compared with the withdrawal and control groups. The microbial functional prediction analysis revealed that the proportions of amino acid metabolism, polyketide sugar unit biosynthesis and peroxisome were significantly increased in the AD group. This study demonstrated that chronic alcohol consumption has a dramatic effect on the microbiota composition structure in the colon but few effects on the jejunum. Inducement of colonic microbiota dysbiosis due to alcohol abuse seems to be a factor of alcohol dependence, which suggests that modulating colonic microbiota composition might be a potentially new target for treating alcohol addiction.

Keywords

References

  1. Heilig M, Egli M. 2006. Pharmacological treatment of alcohol dependence: target symptoms and target mechanisms. Pharmacol. Ther. 111: 855-876. https://doi.org/10.1016/j.pharmthera.2006.02.001
  2. Thoma P, Friedmann C, Suchan B. 2013. Empathy and social problem solving in alcohol dependence, mood disorders and selected personality disorders. Neurosci. Biobehav. Rev. 37: 448-470. https://doi.org/10.1016/j.neubiorev.2013.01.024
  3. de Timary P, Leclercq S, Starkel P, Delzenne N. 2015. A dysbiotic subpopulation of alcohol-dependent subjects. Gut. Microbes 6: 388-391. https://doi.org/10.1080/19490976.2015.1107696
  4. Rehm J, Dawson D, Frick U, Gmel G, Roerecke M, Shield KD, et al. 2014. Burden of disease associated with alcohol use disorders in the United States. Alcohol Clin. Exp. Res. 38: 1068-1077. https://doi.org/10.1111/acer.12331
  5. Levey DF, Leniculescu H, Frank J, Ayalew M, Jain N, Kirlin B, et al. 2014. Genetic risk prediction and neurobiological understanding of alcoholism. Transl. Psychiatry 4: e391. https://doi.org/10.1038/tp.2014.29
  6. Salvatore JE, Aliev F, Edwards AC, Evans DM, Macleod J, Hickman M, et al. 2014. Polygenic scores predict alcohol problems in an independent sample and show moderation by the environment. Genes 5: 330-346. https://doi.org/10.3390/genes5020330
  7. Whelan R, Watts R, Orr CA, Althoff RR, Artiges E, Banaschewski T, et al. 2014. Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature 512: 185-189. https://doi.org/10.1038/nature13402
  8. Gilpin NW, Koob GF. 2008. Neurobiology of alcohol dependence: focus on motivational mechanisms. Alcohol Res. Health 31: 185-195.
  9. Freeman K, Staehle MM, Vadigepalli R, Gonye GE, Ogunnaike BA, Hoek JB, et al. 2013. Coordinated dynamic gene expression changes in the central nucleus of the amygdala during alcohol withdrawal. Alcohol Clin. Exp. Res. 37(suppl): E88-E100. https://doi.org/10.1111/j.1530-0277.2012.01910.x
  10. Gorky J, Schwaber J. 2016. The role of the gut-brain axis in alcohol use disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 4: 234-241.
  11. Leclercq S,de Timary P, Delzenne NM, Starkel P. 2017. The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Transl. Psychiatry 7: e1048. https://doi.org/10.1038/tp.2017.15
  12. Leo Galland. 2014. The Gut Microbiome and the Brain. J. Med. Food 17: 1-12. https://doi.org/10.1089/jmf.2014.1701.ed
  13. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. 2016. The Central Nervous System and the Gut Microbiome. Cell 167: 915-932. https://doi.org/10.1016/j.cell.2016.10.027
  14. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. 2012. A meta genome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 55-60. https://doi.org/10.1038/nature11450
  15. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, et al. 2012. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. USA 109: 8334-8339. https://doi.org/10.1073/pnas.1205624109
  16. Dalal SR, Chang EB. 2014. The microbial basis of inflammatory bowel diseases, J. Clin. Invest. 124: 4190-4196. https://doi.org/10.1172/JCI72330
  17. Jess T. 2014. Microbiota, antibiotics, and obesity. N. Engl. J. Med. 371: 2526-2528. https://doi.org/10.1056/NEJMcibr1409799
  18. Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S. 2016. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry 21: 738-748. https://doi.org/10.1038/mp.2016.50
  19. Foster JA, McVey Neufeld KA. 2013. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36: 305-312. https://doi.org/10.1016/j.tins.2013.01.005
  20. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. 2016. The central nervous system and the gut microbiome. Cell 167: 915-932. https://doi.org/10.1016/j.cell.2016.10.027
  21. Vuong HE, Hsiao EY. 2017. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 81: 411-423. https://doi.org/10.1016/j.biopsych.2016.08.024
  22. Cani PD, Everard A. 2015. Harnessing genes and diet to fine-tune the gut microbial fitness. Cell Metab. 22: 754-756. https://doi.org/10.1016/j.cmet.2015.10.006
  23. Hollister EB, Gao C, Versalovic J. 2014. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146: 1449-1458. https://doi.org/10.1053/j.gastro.2014.01.052
  24. Mutlu EA, Gillevet PM, Rangwala H, Sikaroodi M, Naqvi A, Engen PA, Kwasny M, et al. 2012. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest Liver Physiol. 302: G966-G978. https://doi.org/10.1152/ajpgi.00380.2011
  25. Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. 2015. The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. Alcohol Res. 37: 223-236.
  26. Bishehsari F, Magno E, Swanson G, Desai V, Voigt RM, Forsyth CB, et al. 2017. Alcohol and gut-derived inflammation. Alcohol Res. 38: 163-171.
  27. Bull-Otterson L, Feng W, Kirpich I, Wang Y, Qin X, Liu Y, et al. 2013. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 8: e53028. https://doi.org/10.1371/journal.pone.0053028
  28. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. 2008. Highthroughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57: 1605-1615. https://doi.org/10.1136/gut.2007.133603
  29. Zhao WJ, Wang YP, Liu SY, Huang JJ, Zhai ZX, He C, et al. 2015. The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One 10: e0117441. https://doi.org/10.1371/journal.pone.0117441
  30. Erden BF, Ozdemirci S, Yildiran G, Utkan T, Gacar N, Ulak G. 1999. Dextromethorphan attenuates ethanol withdrawal syndrome in rats. Pharmacol. Biochem. Behav. 62: 537-541. https://doi.org/10.1016/S0091-3057(98)00175-0
  31. Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, et al. 2011. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 54: 562-572. https://doi.org/10.1002/hep.24423
  32. Queipo-Ortuno MI, Boto-Ordonez M, Murri M, Gomez- Zumaquero JM, Clemente-Postigo M, Estruch R, et al. 2012. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr. 95: 1323-1334. https://doi.org/10.3945/ajcn.111.027847
  33. Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M, Gillevet P. 2009. Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin. Exp. Res. 33: 1836-1846. https://doi.org/10.1111/j.1530-0277.2009.01022.x
  34. Yan AW, Fouts DE, Brandl J, Starkel P, Torralba M, Schott E, et al. 2011. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53: 96-105. https://doi.org/10.1002/hep.24018
  35. Mu C, Yang Y, Su Y, Zoetendal EG, Zhu W. 2017. Differences in microbiota membership along the gastrointestinal tract of piglets and their differential alterations following an earlylife antibiotic intervention. Front. Microbiol. 8: 797. https://doi.org/10.3389/fmicb.2017.00797
  36. Xiao HW, Ge C, Feng GX, Li Y, Luo D, Dong JL, et al. 2018. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice. Toxicol. Lett. 287: 23-30. https://doi.org/10.1016/j.toxlet.2018.01.021
  37. Peterson VL, Jury NJ, Cabrera-Rubio R, Draper LA, Crispie F, Cotter PD, et al. 2017. Drunk bugs: chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice. Behav. Brain Res. 323: 172-176. https://doi.org/10.1016/j.bbr.2017.01.049
  38. Levitt MD, Li R, DeMaster EG, Elson M, Furne J, Levitt DG. 1997. Use of measurements of ethanol absorption from stomach and intestine to assess human ethanol metabolism. Am. J. Physiol. 273: G951-G957.
  39. Norberg A, Jones AW, Hahn RG, Gabrielsson JL. 2003. Role of variability in explaining ethanol pharmacokinetics: research and forensic applications. Clin. Pharmacokinet 42: 1-31. https://doi.org/10.2165/00003088-200342010-00001
  40. Zakhari S . 2006. Overview: h ow i s alc ohol m etabolized by the body? Alcohol Res. Health 29: 245-254.
  41. Nosova T, Jousimies-Somer H, Jokelainen K, Heine R, Salaspuro M. 2000. Acetaldehyde production and metabolism by human indigenous and probiotic Lactobacillus and Bifidobacterium strains. Alcohol Alcohol 35: 561-568. https://doi.org/10.1093/alcalc/35.6.561
  42. Leclercq S, Matamoros S, Cani PD, Neyrinck AM, Jamar F, Starkel P, et al. 2014. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl. Acad. Sci. USA 111: E4485-E4493. https://doi.org/10.1073/pnas.1415174111
  43. Leclercq S, De Saeger C, Delzenne N, de Timary P, Starkel P. 2014. Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol. Psychiatry 76: 725-733. https://doi.org/10.1016/j.biopsych.2014.02.003
  44. Kirpich IA, Solovieva NV, Leikhter SN, Shidakova NA, Lebedeva OV, Sidorov PI, et al. 2008. Probiotics restore bowel flora and improve liver enzymes in human alcoholinduced liver injury: a pilot study. Alcohol 42: 675-682. https://doi.org/10.1016/j.alcohol.2008.08.006
  45. Dubinkina VB, Tyakht AV, Odintsova VY, Yarygin KS, Kovarsky BA, Pavlenko AV, et al. 2017. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome 5: 141. https://doi.org/10.1186/s40168-017-0359-2
  46. Nimgampalle M, Kuna Y. 2017. Anti-Alzheimer Properties of Probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer's disease induced Albino Rats. J. Clin. Diagn. Res. 11: KC01-KC05. https://doi.org/10.1111/crj.12541
  47. Wang H, Lee IS, Braun C, Enck P. 2016. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J. Neurogastroenterol Motil 22: 589-605. https://doi.org/10.5056/jnm16018
  48. Leclercq S, Cani PD, Neyrinck AM, Starkel P, Jamar F, Mikolajczak M, et al. 2012. Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain Behav. Immun. 26: 911-918. https://doi.org/10.1016/j.bbi.2012.04.001
  49. Parlesak A, Schafer C, Schutz T, Bode JC, Bode C. 2000. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 32: 742-747. https://doi.org/10.1016/S0168-8278(00)80242-1
  50. Bode C, Bode JC. 2003. Effect of alcohol consumption on the gut. Best Pract Res. Clin. Gastroenterol 17: 575-592.
  51. Keshavarzian A, Farhadi A, Forsyth CB, Rangan J, Jakate S, Shaikh M, et al. 2009. Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J. Hepatol 50: 538-547.
  52. de Timary P, Starkel P, Delzenne NM, Leclercq S. 2017. A role for the peripheral immune system in the development of alcohol use disorders? Neuropharmacology 122: 148-160. https://doi.org/10.1016/j.neuropharm.2017.04.013
  53. Donnadieu-Rigole H, Pansu N, Mura T, Pelletier S, Alarcon R, Gamon L, et al. 2018. Beneficial effect of alcohol withdrawal on gut permeability and microbial translocation in patients with alcohol use disorder. Alcohol. Clin. Exp. Res. 42: 32-40. https://doi.org/10.1111/acer.13527
  54. Starkel P, Leclercq S, de Timary P, Schnabl B. 2018. Intestinal dysbiosis and permeability: the yin and yang in alcohol dependence and alcoholic liver disease. Clin. Sci. (Lond) 132: 199-212. https://doi.org/10.1042/CS20171055

Cited by

  1. Associations of Probiotic Fermented Milk (PFM) and Yogurt Consumption with Bifidobacterium and Lactobacillus Components of the Gut Microbiota in Healthy Adults vol.11, pp.3, 2018, https://doi.org/10.3390/nu11030651
  2. A potential role for the gut microbiome in substance use disorders vol.236, pp.5, 2018, https://doi.org/10.1007/s00213-019-05232-0
  3. DietaryAdvancedGlycationEnd Products–InducedCognitive Impairment in Aged ICR Mice: Protective Role of Quercetin vol.64, pp.3, 2018, https://doi.org/10.1002/mnfr.201901019
  4. The Microbiome-Gut-Brain Axis, a Potential Therapeutic Target for Substance-Related Disorders vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.738401
  5. Effects of Alcohol Binge Drinking and Oleoylethanolamide Pretreatment in the Gut Microbiota vol.11, pp.None, 2018, https://doi.org/10.3389/fcimb.2021.731910
  6. High Plasticity of the Gut Microbiome and Muscle Metabolome of Chinese Mitten Crab (Eriocheir sinensis) in Diverse Environments vol.31, pp.2, 2018, https://doi.org/10.4014/jmb.2011.11018
  7. Translational Approaches with Antioxidant Phytochemicals against Alcohol-Mediated Oxidative Stress, Gut Dysbiosis, Intestinal Barrier Dysfunction, and Fatty Liver Disease vol.10, pp.3, 2021, https://doi.org/10.3390/antiox10030384
  8. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight vol.73, pp.2, 2021, https://doi.org/10.1124/pharmrev.120.000144
  9. Ethanol: striking the cardiovascular system by harming the gut microbiota vol.321, pp.2, 2021, https://doi.org/10.1152/ajpheart.00225.2021
  10. Integrated Analyses of the Gut Microbiota, Intestinal Permeability, and Serum Metabolome Phenotype in Rats with Alcohol Withdrawal Syndrome vol.87, pp.18, 2021, https://doi.org/10.1128/aem.00834-21
  11. Drugs and bugs: Negative affect, psychostimulant use and withdrawal, and the microbiome vol.30, pp.6, 2018, https://doi.org/10.1111/ajad.13210