Acknowledgement
Supported by : Incheon National University
References
- R. A. Adams and J. J. F. Fournier, Sobolev Spaces, second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.
- A. Ambrosetti and M. Badiale, The dual variational principle and elliptic problems with discontinuous nonlinearities, J. Math. Anal. Appl. 140 (1989), no. 2, 363-373. https://doi.org/10.1016/0022-247X(89)90070-X
- A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
- M. Badiale and G. Tarantello, Existence and multiplicity results for elliptic problems with critical growth and discontinuous nonlinearities, Nonlinear Anal. 29 (1997), no. 6, 639-677. https://doi.org/10.1016/S0362-546X(96)00071-5
- G. Barletta, A. Chinni, and D. O'Regan, Existence results for a Neumann problem involving the p(x)-Laplacian with discontinuous nonlinearities, Nonlinear Anal. Real World Appl. 27 (2016), 312-325. https://doi.org/10.1016/j.nonrwa.2015.08.002
- B. Barrios, E. Colorado, A. De Pablo, and U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133-6162. https://doi.org/10.1016/j.jde.2012.02.023
-
T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on
${\mathbb{R}}^N$ , Comm. Partial Differential Equations 20 (1995), no. 9-10, 1725-1741. https://doi.org/10.1080/03605309508821149 - J. Berkovits and M. Tienari, Topological degree theory for some classes of multis with applications to hyperbolic and elliptic problems involving discontinuous nonlinearities, Dynam. Systems Appl. 5 (1996), no. 1, 1-18.
- J. Bertoin, Levy Processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996.
- C. Bjorland, L. Caffarelli, and A. Figalli, Non-local gradient dependent operators, Adv. Math. 230 (2012), no. 4-6, 1859-1894. https://doi.org/10.1016/j.aim.2012.03.032
- G. Bonanno and G. M. Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009), Art. ID 670675, 20 pp.
- G. Bonanno and A. Chinni, Discontinuous elliptic problems involving the p(x)-Laplacian, Math. Nachr. 284 (2011), no. 5-6, 639-652. https://doi.org/10.1002/mana.200810232
- L. Brasco, E. Parini, and M. Squassina, Stability of variational eigenvalues for the fractional p-Laplacian, Discrete Contin. Dyn. Syst. 36 (2016), no. 4, 1813-1845. https://doi.org/10.3934/dcds.2016.36.1813
- F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 1, 1-39. https://doi.org/10.1090/S0273-0979-1983-15153-4
- L. Caffarelli, Non-local diffusions, drifts and games, in Nonlinear partial differential equations, 37-52, Abel Symp., 7, Springer, Heidelberg, 2012.
- K. C. Chang, The obstacle problem and partial differential equations with discontinuous nonlinearities, Comm. Pure Appl. Math. 33 (1980), no. 2, 117-146. https://doi.org/10.1002/cpa.3160330203
- K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), no. 1, 102-129. https://doi.org/10.1016/0022-247X(81)90095-0
- X. Chang and Z.-Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Equations 256 (2014), no. 8, 2965-2992. https://doi.org/10.1016/j.jde.2014.01.027
- F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983.
- P. Drabek, A. Kufner, and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co., Berlin, 1997.
- G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul. 7 (2008), no. 3, 1005-1028. https://doi.org/10.1137/070698592
- A. Iannizzotto, S. Liu, K. Perera, and M. Squassina, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var. 9 (2016), no. 2, 101-125. https://doi.org/10.1515/acv-2014-0024
- I.-S. Kim and J.-H. Bae, Elliptic boundary value problems with discontinuous nonlinearities, J. Nonlinear Convex Anal. 17 (2016), no. 1, 27-38.
- Y.-H. Kim, Existence of a weak solution for the fractional p-Laplacian equations with discontinuous nonlinearities via the Berkovits-Tienari degree theory, Topol. Methods Nonlinear Anal. 51 (2018), no. 2, 371-388. https://doi.org/10.12775/TMNA.2017.064
- N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2
-
J. Lee, J.-M. Kim, and Y.-H. Kim, Existence of weak solutions to a class of Schrodinger type equations involving the fractional p-Laplacian in
${\mathbb{R}}^N$ , submitted. - R. Lehrer, L. A. Maia, and M. Squassina, On fractional p-Laplacian problems with weight, Differential Integral Equations 28 (2015), no. 1-2, 15-28.
- V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2002), no. 2, 230-238. https://doi.org/10.1006/jfan.2002.3955
- R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77 pp.
- R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), no. 31, 161-208. https://doi.org/10.1088/0305-4470/37/1/011
- E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
- K. Perera, M. Squassina, and Y. Yang, Bifurcation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr. 289 (2016), no. 2-3, 332-342. https://doi.org/10.1002/mana.201400259
- R. Servadei, Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity, in Recent trends in nonlinear partial differential equations. II. Stationary problems, 317-340, Contemp. Math., 595, Amer. Math. Soc., Providence, RI, 2013.
- X. Shang, Existence and multiplicity of solutions for a discontinuous problems with critical Sobolev exponents, J. Math. Anal. Appl. 385 (2012), no. 2, 1033-1043. https://doi.org/10.1016/j.jmaa.2011.07.029
- M. Struwe, Variational Methods, second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 34, Springer-Verlag, Berlin, 1996.
-
C. E. Torres Ledesma, Existence and symmetry result for fractional p-Laplacian in
${\mathbb{R}}^n$ , Commun. Pure Appl. Anal. 16 (2017), no. 1, 99-113. https://doi.org/10.3934/cpaa.2017004 - M. Xiang, B. Zhang, and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl. 424 (2015), no. 2, 1021-1041. https://doi.org/10.1016/j.jmaa.2014.11.055
- Z. Yuan and L. Huang, Non-smooth extension of a three critical points theorem by Ricceri with an application to p(x)-Laplacian differential inclusions, Electron. J. Differential Equations 2015 (2015), no. 232, 16 pp.
- E. Zeidler, Nonlinear Functional Analysis and Its Applications. III, translated from the German by Leo F. Boron, Springer-Verlag, New York, 1985.
- E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B, translated from the German by the author and Leo F. Boron, Springer-Verlag, New York, 1990.
- B. Zhang and M. Ferrara, Multiplicity of solutions for a class of superlinear non-local fractional equations, Complex Var. Elliptic Equ. 60 (2015), no. 5, 583-595. https://doi.org/10.1080/17476933.2014.959005